
2026/01/17 15:34 1/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

Neue CAN Konfiguration

Dieses Dokument zeigt die Netzwerk-Änderungen in Debian Bookworm / Trixie (also auch dem
Raspberry Pi OS) im Bezug auf CAN. Es behandelt die Umstellung von ifupdown zu systemd-
networkd, und zeigt wie man Probleme analysiert, Konfigurationen erstellt und Konflikte löst.

YouTube Video #141

Video

Warum anders ab Bookworm

Seit Bookworm ist ifupdown nicht mehr standardmäßig installiert und wurde durch systemd-
networkd ersetzt. Dies betrifft besonders CAN-Interfaces (Controller Area Network), die viel im 3D-
Druck genutzt werden.

Warum der Wechsel? systemd-networkd ist modern, in systemd integriert, ermöglicht parallele
Verarbeitung für schnellere Boot-Zeiten und reduziert Abhängigkeiten von alten Skripten.

Vorteile: Höhere Stabilität in serverartigen oder embedded Setups, bessere Fehlerbehandlung,
Skalierbarkeit für komplexe Netzwerke wie Bridges oder VLANs.

Nachteile: Lernkurve für Legacy-Nutzer und mögliche Konflikte mit NetworkManager, das auf
Raspberry Pi für WLAN/Ethernet läuft.

Was ist das ... ?

ifupdown: Ein klassisches, script-basiertes Tool aus den 1990er Jahren, das über Textdateien
wie /etc/network/interfaces arbeitet. Es ist einfach für statische Konfigurationen (z. B.
feste IPs, CAN-Queues), aber imperativ (Schritt-für-Schritt) und veraltet. In Bookworm nicht
mehr Standard, muss manuell installiert werden (apt install ifupdown). Geeignet für
Legacy, aber fehlt an Integration in systemd, was zu langsameren Boots und Fehlern führen
kann Debian Network Config ifupdown Docs.
NetworkManager (NM): Ein dynamisches Tool für Desktops/Laptops, ideal für WiFi, VPNs,
Hotplugging. Verwendet Verbindungen (via nmcli oder GUI wie nm-applet). Auf Raspberry Pi
Bookworm Standard für WLAN/Ethernet, besonders mit GUI. Stark für dynamische Setups, aber

https://www.youtube-nocookie.com/embed/XXX?
https://www.youtube-nocookie.com/embed/XXX?
https://wiki.debian.org/NetworkConfiguration#The_.2BAC8-ifupdown_way
https://manpages.debian.org/bookworm/ifupdown/interfaces.5.en.html

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

ressourcenintensiv und kann mit systemd-networkd kollidieren NetworkManager Docs Debian
NM Wiki.
systemd-networkd: Moderner, deklarativer Manager, integriert in systemd. Konfiguriert über
.network- und .link-Dateien in /etc/systemd/network/. Leichtgewichtig, schnell, stabil
für Server/IoT, Default in Bookworm für headless Setups. Ideal für CAN (Bitrate, Restarts direkt
setzbar), aber ohne GUI Debian systemd-networkd systemd Docs.

Vergleichstabelle:

Tool Geschichte & Typ Stärken Schwächen Raspberry Pi-Nutzung

ifupdown 1990er, script-
basiert

Einfach,
statisch,
niedrige
Ressourcen

Veraltet, keine
Parallelarbeit,
imperativ

Optional für Legacy,
manuell installieren

NetworkManager Modern, dynamisch
GUI/TUI,
Hotplugging,
WiFi/VPN

Ressourcenintensiv,
Konflikte möglich

Standard für
Desktop/WLAN/Ethernet

systemd-networkd Systemd-integriert,
deklarativ

Schnell,
stabil,
skalierbar

Keine GUI, Lernkurve Default für
headless/CAN/IoT

Begründung für Wechsel: Debian und Raspberry Pi wollen Konsistenz, Sicherheit und moderne
Standards. systemd-networkd vermeidet Schwächen von ifupdown und passt zu IoT/Cloud-Trends
Debian Release Notes systemd-networkd Docs.

Was wird verwendet?

Um zu verstehen, was auf einem Raspberry Pi / SBC läuft, prüfe zuerst die installierten Pakete und
Dienste – Bookworm mischt oft NetworkManager (GUI, WLAN/Ethernet) und systemd-networkd
(headless, CAN). Schritte:

Pakete prüfen: dpkg -l | grep ifupdown (zeigt, ob installiert; meist nicht in Bookworm).
Dienste prüfen: systemctl status systemd-networkd (sollte “active” sein), systemctl
status NetworkManager (aktiv für WLAN/Ethernet).
Interfaces analysieren: networkctl list zeigt systemd-networkd-verwaltete Interfaces (z.
B. configured für can0, unmanaged für andere). nmcli device zeigt NetworkManager-
verwaltete (z. B. connected für wlan0). ip link show gibt Low-Level-Details (UP/DOWN,
Queues). Konflikte (z. B. ein Interface in beiden) via Logs prüfen (siehe Kapitel 5) RPi Stack
Exchange Debian Wiki.

networkctl list
IDX LINK TYPE OPERATIONAL SETUP
 1 lo loopback carrier unmanaged
 2 eth0 ether no-carrier configuring
 3 can0 can carrier configured
 4 wlan0 wlan routable unmanaged
4 links listed.

https://networkmanager.dev/docs/
https://wiki.debian.org/NetworkManager
https://wiki.debian.org/NetworkManager
https://wiki.debian.org/SystemdNetworkd
https://www.freedesktop.org/software/systemd/man/systemd.network.html
https://www.debian.org/releases/bookworm/amd64/release-notes/ch-information.en.html
https://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html
https://raspberrypi.stackexchange.com/questions/108592/use-systemd-networkd-for-general-networking
https://raspberrypi.stackexchange.com/questions/108592/use-systemd-networkd-for-general-networking
https://wiki.debian.org/SystemdNetworkd

2026/01/17 15:34 3/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

nmcli device
DEVICE TYPE STATE CONNECTION
wlan0 wifi connected FlyOS wireless
lo loopback connected (externally) lo
p2p-dev-wlan0 wifi-p2p disconnected --
eth0 ethernet unavailable --
can0 can unmanaged --

CAN-Konfig

CAN-Interfaces (z. B. can0 für MCP2515-Chips, oder USB Koppler) sind von der Bookworm-Änderung
betroffen, da sie früher über ifupdown liefen. Hier die Schritte für beide Methoden.

https://www.freedesktop.org/software/systemd/man/latest/networkd.conf.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.network.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.link.html

Voraussetzungen

Die CAN Hardware muss natürlich angeschlossen sein
CAB USB Adapter werden - wenn sich die richtige Firmware haben - in der Regel vom Kernel
erkannt.
SPI Devices brauchen oft eine extra Konfig. Beispiel MCP2515 am Raspberry Pi:

Editiere /boot/config.txt
dtoverlay=mcp2515-can0,oscillator=8000000,interrupt=25

systemd-Methode (link)

Konfigurationsdateien erstellen
sudo nano /etc/systemd/network/25-can.network

[Match]
Name=can*
[CAN]
BitRate=1M
RestartSec=0.1s
[Link]
RequiredForOnline=no

Konfigurationsdateien erstellen
sudo nano /etc/systemd/network/99-can-link.link

[Match]
OriginalName=can*
[Link]
TransmitQueueLength=128

https://www.freedesktop.org/software/systemd/man/latest/networkd.conf.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.network.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.link.html

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

Dienst aktivieren
sudo systemctl enable --now systemd-networkd
sudo udevadm control --reload-rules && sudo udevadm trigger
Reboot erforderlich
sudo reboot
Prüfen

ip link show can0 → Zeigt qlen 1024
networkctl status can0 → Zeigt Bitrate 1M

systemd-Methode (udev)

https://canbus.esoterical.online/Getting_Started.html

Konfigurationsdateien erstellen
sudo nano /etc/systemd/network/25-can.network

[Match]
Name=can*
[CAN]
BitRate=1M
RestartSec=0.1s
[Link]
RequiredForOnline=no

Konfigurationsdateien erstellen
sudo nano /etc/udev/rules.d/10-can.rules

SUBSYSTEM=="net", ACTION=="change|add", KERNEL=="can*",
ATTR{tx_queue_len}="128"

Dienst aktivieren
sudo systemctl enable --now systemd-networkd
sudo udevadm control --reload-rules && sudo udevadm trigger
Reboot erforderlich
sudo reboot
Prüfen

ip link show can0 → Zeigt qlen 1024
networkctl status can0 → Zeigt Bitrate 1M

ifupdown (legacy / alt)

Dies ist die “alte” Methode um ein CAN Interface einzurichten. Diese Variante wurde bis Debian 11
(Bullseye) verwendet.
Sie funktioniert aber immer noch wenn man ifupdown nachinstalliert.
Hinweis: In neuen Debian Versionen (Bookworm, Trixie) lieber gleich auf die neue Variante umsteigen
!

Ein (oder vermutlich DAS) Hauptproblem warum diese Version in neuren Systemen nicht mehr

https://canbus.esoterical.online/Getting_Started.html

2026/01/17 15:34 5/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

funktioniert ist das fehlende Paket ifupdown.
Wenn man also diese Version der CAN Konfiguration nutzen möchte, dann muss es
nachinstalliert werden:
sudo apt install ifupdown
Dann die übliche Konfig anlegen
sudo nano /etc/network/interfaces.d/can0

 auto can0
 iface can0 inet manual
 pre-up /sbin/ip link set can0 type can bitrate 1000000
 up /sbin/ifconfig can0 up
 post-up /sbin/ip link set can0 txqueuelen 1024
 down /sbin/ifconfig can0 down

Testweise aktivieren falls es down ist geht mittels
sudo ifup can0
Prüfen kann man das dann mit
ifconfig can0 oder ip link show can0

Nachteil: Weniger integriert, potenziell langsamere Boots CANbus Guide.

Migration

Bei Upgrades von Bullseye auf eine höhere Debian Version …

Entferne alte /etc/network/interfaces-Dateien
LAN / WLAN mittels Network Manager einrichten (nmtui)
CAN mittels systemd-networkd einrichten

nützliche Tools

Hier sind die wichtigsten Tools für Diagnose und Management, mit Beispielen und Anwendungsfällen:

systemd-networkd:

networkctl list: Übersicht aller Interfaces (z. B. can0 configured).
networkctl status <iface>: Details zu Bitrate/Status (z. B. can0 Bitrate).
systemd-analyze: Boot-Zeiten-Analyse für Netzwerk-Verzögerungen.

NetworkManager:

nmcli device: Geräte-Status (z. B. wlan0 connected).
nmcli connection show: Verbindungs-Details (IPs, DNS).
nmtui: Text-UI für headless Setups.
nm-connection-editor: GUI für Desktop (wenn nicht vorhanden → sudo apt install
network-manager-gnome)

Allgemein:

ip link show <iface>: Low-Level-Status, Queues.

https://canbus.esoterical.online/Getting_Started.html

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

ip addr show <iface>: IPs und Adressen.
ls /etc/systemd/network/: Configs anzeigen

networkctl Docs NM Docs Arch Wiki.

journalctl / dmesg

Debugging ist essenziell für Netzwerkprobleme. Hier die wichtigsten Log-Tools:

journalctl: Systemd-Logs. Nutze:

journalctl -u systemd-networkd: Logs für systemd-networkd (suche “Link UP”, Errors
wie “Failed to bring up”).
journalctl -u NetworkManager: Logs für NM.
Achten auf: Timestamps (-S “5 minutes ago”), Prioritäten (-p err für Errors), Units (-u).
Live-Monitoring mit --follow.

dmesg: Kernel-Logs. Nutze:

dmesg | grep can: CAN-Treiber-Init (z. B. “MCP2515 initialized” oder “No carrier”).
Achten auf: Zeitstempel (seit Boot), Level (-l err für Errors).

Andere Stellen:

/var/log/syslog: Allgemeine Logs.
/var/log/kern.log: Kernel-Logs.
systemctl status <dienst>: Kurze Übersicht.
journalctl -b: Logs seit letztem Boot

journalctl Docs dmesg Docs Debian Journal.

Tipp: journalctl --vacuum-time=2weeks zum Log-Aufräumen.

Parallelbetrieb NM & systemd-networkd

In Bookworm laufen NetworkManager (WLAN/Ethernet) und systemd-networkd (headless/CAN) oft
parallel, was Konflikte verursachen kann. Häufige Probleme:

Konflikte bei Interfaces: Z. B. eth0 als configuring in networkctl, aber unavailable in
nmcli – beide Manager greifen zu.
Symptome: Doppelte IPs, Boot-Verzögerungen (z. B. systemd-networkd-wait-online fail),
Interfaces nicht erreichbar.
Ursachen: Überlappende Konfigurationen (z. B. .network-Datei für eth0 in
/etc/systemd/network/). Community-Berichte über Netzwerkbrüche bei Upgrades Medium
Story RPi Forum Konflikte.

Lösungen:

https://www.freedesktop.org/software/systemd/man/networkctl.html
https://networkmanager.dev/docs/
https://wiki.archlinux.org/title/Systemd-networkd
https://www.freedesktop.org/software/systemd/man/journalctl.html
https://manpages.debian.org/bookworm/systemd/dmesg.1.en.html
https://wiki.debian.org/Systemd#Journal
https://medium.com/@life-is-short-so-enjoy-it/story-one-issue-in-raspberry-pi-os-brought-me-to-know-about-lennart-poettering-and-systemd-e5d8aad8c3f7
https://medium.com/@life-is-short-so-enjoy-it/story-one-issue-in-raspberry-pi-os-brought-me-to-know-about-lennart-poettering-and-systemd-e5d8aad8c3f7
https://forums.raspberrypi.com/viewtopic.php?t=376705

2026/01/17 15:34 7/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

Trenne Interfaces: In /etc/NetworkManager/NetworkManager.conf:

code [keyfile] unmanaged-devices=interface-name:can*

 Danach: ''sudo systemctl restart NetworkManager''.
* **Deaktiviere einen Manager**: Z. B. ''sudo systemctl disable
NetworkManager''.
* **Prüfe Konfig-Dateien**: Entferne eth0 aus ''/etc/systemd/network/'':
 ''code
 sudo rm /etc/systemd/network/<eth0-datei>.network
 sudo systemctl restart systemd-networkd
 ''

Demo: Zeige Konflikt aus Rechner-Daten, dann Fix: code nmcli connection add type
ethernet ifname eth0 con-name “Wired connection 1”

CAN mit NM?

Kurz: Möglich, aber nicht empfohlen. NetworkManager ist für IP-basierte Netzwerke (WiFi,
Ethernet, VPN) optimiert und unterstützt CAN nicht nativ (keine Bitrate/Queue-Optionen).
Workaround: Custom-Skripte in /etc/NetworkManager/dispatcher.d/ (z. B. für ip link set
can0 type can bitrate 1M), aber das ist kompliziert und unstabil. Community empfiehlt
systemd-networkd für CAN, da es low-level-Protokolle besser handhabt. NM sollte CAN als
unmanaged markieren Stack Exchange NM Config Docs.

Demo: Zeige Fehlversuch mit nmcli (kein CAN-Support), dann Workaround: code sudo ip link
set can0 up type can bitrate 1000000

Tipp: Bleib bei systemd-networkd für CAN-Stabilität.

Befehlsreferenz

Hier eine Zusammenfassung aller nützlichen Befehle aus dem Video als Quick-Reference:

Kategorie Befehl Beschreibung & Beispiel
Installation/Status dpkg -l | grep ifupdown Prüft, ob ifupdown installiert ist.

systemctl status systemd-
networkd

Zeigt Status von systemd-networkd
(active/inactive).

systemctl status
NetworkManager Zeigt Status von NM.

Interface-Übersicht networkctl list Listet systemd-verwaltete Interfaces (z. B.
can0 configured).

nmcli device Listet NM-verwaltete Interfaces (z. B.
wlan0 connected).

ip link show <iface> Low-Level-Details (z. B. ip link show
can0 für Queue/Status).

ip addr show <iface> IPs und Adressen (z. B. für eth0).

https://unix.stackexchange.com/questions/629484/how-to-set-txqueuelen-permanently-on-linux
https://networkmanager.dev/docs/api/latest/NetworkManager.conf.html

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

Kategorie Befehl Beschreibung & Beispiel

Konfiguration sudo systemctl enable --now
systemd-networkd Aktiviert systemd-networkd.

sudo ifup <iface> Aktiviert Interface mit ifupdown (z. B.
can0).

nmcli connection add type
ethernet ifname eth0 con-
name “Wired”

Fügt NM-Verbindung hinzu.

sudo udevadm control --
reload-rules && sudo
udevadm trigger

Lädt Udev-Regeln neu (für .link-Dateien).

Debugging journalctl -u systemd-
networkd

Logs für systemd-networkd (filtere mit -p
err).

journalctl -u
NetworkManager Logs für NM.

dmesg | grep can Kernel-Logs für CAN (z. B. Treiber-Init).

systemd-analyze blame Boot-Zeiten-Analyse (zeigt Netzwerk-
Verzögerungen).

Manuell Aktivieren sudo ip link set can0 up
type can bitrate 1M Manuelles CAN-Setup (Fallback).

Python Testscript

DiesesPython Script zeigt, welches Interface von welchem Manager gemanaged wird.

Beispielausgabe

fly@fly-minipad:~$ python3 can.py
System Information:
OS : Armbian 25.8.1 bookworm
Kernel : 5.10.85-v3.0-fly-sunxi

Interfaces and Managers:
+---------------+----------------------+--------------------------------+
| Interface | Manager | Configuration Source |
+---------------+----------------------+--------------------------------+
can	ifupdown	/etc/network/interfaces.d/can1
can0	ifupdown	/etc/network/interfaces.d/can0
can1	ifupdown	/etc/network/interfaces.d/can1
eth0	Unmanaged or Unknown	None
eth1	NetworkManager	Connection: Wired
inet	ifupdown	/etc/network/interfaces
lo	NetworkManager	Connection: (externally)
p2p-dev-wlan0	Unmanaged or Unknown	None
wlan0	NetworkManager	Connection: NoMamsLand
+---------------+----------------------+--------------------------------+

can.py

https://www.drklipper.de/doku.php?do=export_code&id=klipper_faq:can:neue_can_konfiguration&codeblock=7

2026/01/17 15:34 9/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

#!/usr/bin/env python3
import subprocess
import re
import os
import glob
from platform import release, system, uname

def run_command(cmd):
 result = subprocess.run(cmd, shell=True, capture_output=True,
text=True)
 return result.stdout.splitlines()

def parse_networkctl():
 networkctl = run_command("networkctl list")
 interfaces = {}
 for line in networkctl[1:]: # Skip header
 parts = re.split(r'\s+', line.strip())
 if len(parts) >= 5:
 iface, setup = parts[1], parts[-1]
 interfaces[iface] = {"setup": setup, "config": None}
 for f in glob.glob("/etc/systemd/network/*.network"):
 with open(f, "r") as file:
 if f"Name={iface}" in file.read() or "Name=*" in
file.read():
 interfaces[iface]["config"] = f
 return interfaces

def parse_nmcli():
 nmcli = run_command("nmcli device")
 interfaces = {}
 for line in nmcli[1:]: # Skip header
 parts = re.split(r'\s+', line.strip())
 if len(parts) >= 4:
 iface, state, conn = parts[0], parts[2], parts[3]
 interfaces[iface] = {"state": state, "config":
f"Connection: {conn}" if conn != "--" else None}
 return interfaces

def check_ifupdown():
 interfaces = {}
 if os.path.exists("/etc/network/interfaces"):
 with open("/etc/network/interfaces", "r") as f:
 for line in f:
 if line.strip().startswith(("iface ", "allow-hotplug
")):
 parts = line.split()
 if len(parts) > 1:
 iface = parts[1] if parts[0] == "allow-hotplug"
else parts[2]
 interfaces[iface] = {"manager": "ifupdown",
"config": "/etc/network/interfaces"}

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

 for file in glob.glob("/etc/network/interfaces.d/*"):
 with open(file, "r") as f:
 for line in f:
 if line.strip().startswith(("iface ", "allow-hotplug
")):
 parts = line.split()
 if len(parts) > 1:
 iface = parts[1] if parts[0] == "allow-hotplug"
else parts[2]
 interfaces[iface] = {"manager": "ifupdown",
"config": file}
 return interfaces

def print_system_info():
 os_info = "Raspberry Pi OS" if os.path.exists("/etc/rpi-issue")
else "Unknown OS"
 with open("/etc/os-release", "r") as f:
 for line in f:
 if line.startswith("PRETTY_NAME="):
 os_info = line.split("=")[1].strip().strip('"')
 break
 kernel = release()
 print(f"System Information:")
 print(f"{'OS':<20}: {os_info}")
 print(f"{'Kernel':<20}: {kernel}")
 print()

def print_table(data):
 headers = ["Interface", "Manager", "Configuration Source"]
 max_len = [len(h) for h in headers]
 rows = []
 for iface, info in data.items():
 manager = info.get("manager", "Unmanaged or Unknown")
 config = info.get("config", "None")
 rows.append([iface, manager, config])
 max_len = [max(max_len[i], len(str(col))) for i, col in
enumerate([iface, manager, config])]

 print("+" + "+".join("-" * (l + 2) for l in max_len) + "+")
 print("|" + "|".join(f" {h:<{max_len[i]}} " for i, h in
enumerate(headers)) + "|")
 print("+" + "+".join("-" * (l + 2) for l in max_len) + "+")

 for row in sorted(rows, key=lambda x: x[0]):
 print("|" + "|".join(f" {col:<{max_len[i]}} " for i, col in
enumerate(row)) + "|")
 print("+" + "+".join("-" * (l + 2) for l in max_len) + "+")

def main():

2026/01/17 15:34 11/12 Neue CAN Konfiguration

Dr. Klipper Wiki - https://www.drklipper.de/

 print_system_info()
 print("Interfaces and Managers:")

 networkctl_ifaces = parse_networkctl()
 nmcli_ifaces = parse_nmcli()
 ifupdown_ifaces = check_ifupdown()

 all_ifaces = set(networkctl_ifaces.keys()) |
set(nmcli_ifaces.keys()) | set(ifupdown_ifaces.keys())
 result = {}

 for iface in all_ifaces:
 if iface in ifupdown_ifaces:
 result[iface] = {"manager": "ifupdown", "config":
ifupdown_ifaces[iface]["config"]}
 elif networkctl_ifaces.get(iface, {}).get("setup", "") in
["configured", "configuring"]:
 result[iface] = {"manager": "systemd-networkd", "config":
networkctl_ifaces[iface]["config"]}
 elif nmcli_ifaces.get(iface, {}).get("state", "") in
["connected", "connecting"]:
 result[iface] = {"manager": "NetworkManager", "config":
nmcli_ifaces[iface]["config"]}
 else:
 result[iface] = {"manager": "Unmanaged or Unknown",
"config": "None"}

 print_table(result)

if __name__ == "__main__":
 main()

Links

Weitere Themen: Vorteile von systemd-networkd (automatische Restarts), Nachteile (keine GUI),
Alternativen wie Netplan (Ubuntu-fokussiert). Integration mit raspi-config für WiFi, CAN in Docker.

Raspberry Pi Foren: Bookworm Änderungen, NM vs. systemd, CAN Setup
Debian Wiki: systemd-networkd Guide
Stack Exchange: systemd Nutzung
Medium: Migration Story
Arch Wiki: Erweiterte Docs
Hackaday: RPi Netzwerk
Offizielle RPi-Docs: Netzwerk-Konfig

https://forums.raspberrypi.com/viewtopic.php?t=378067
https://forums.raspberrypi.com/viewtopic.php?t=376705
https://forums.raspberrypi.com/viewtopic.php?t=386658
https://wiki.debian.org/SystemdNetworkd
https://raspberrypi.stackexchange.com/questions/108592/use-systemd-networkd-for-general-networking
https://medium.com/@life-is-short-so-enjoy-it/story-one-issue-in-raspberry-pi-os-brought-me-to-know-about-lennart-poettering-and-systemd-e5d8aad8c3f7
https://wiki.archlinux.org/title/Systemd-networkd
https://hackaday.io/project/162164/instructions
https://www.raspberrypi.com/documentation/computers/configuration.html

Last
update:
2025/09/03
12:30

klipper_faq:can:neue_can_konfiguration https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

https://www.drklipper.de/ Printed on 2026/01/17 15:34

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link:
https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

Last update: 2025/09/03 12:30

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=klipper_faq:can:neue_can_konfiguration&rev=1756895436

	Neue CAN Konfiguration
	YouTube Video #141
	Warum anders ab Bookworm
	Was ist das ... ?
	Was wird verwendet?
	CAN-Konfig
	Voraussetzungen
	systemd-Methode (link)
	systemd-Methode (udev)
	ifupdown (legacy / alt)
	Migration

	nützliche Tools
	journalctl / dmesg
	Parallelbetrieb NM & systemd-networkd
	CAN mit NM?
	Befehlsreferenz
	Python Testscript
	Links

