Cartographer 3D

Hinweis

Diese Anleitung bezieht sich auf einen **Voron 2.4 Umbau**. Der Cartographer kann natürlich auch in jedem anderen Drucker eingebaut werden - nur müsst ihr dann schauen das ihr die richtige Halterung findet / habt / zeichnet. Was die Einrichtung angeht ist es für alle Drucker gleich.

YouTube Video #128

Hardware

- Es empfiehlt sich auf jeden Fall den CNC Mount zu kaufen. Den gibt es beim Hersteller oder bei Ali für ca. 20€.
- Der CNC Mount erleichtert ganz enorm die Kabelverlegung, ist deutlich stabiler / verwindungssteifer und wiegt nur wenig mehr wir die gedruckte Variante.
- Der gedruckte Mount der von auf der Cartographer Seite genannt wird (https://www.teamfdm.com/files/file/686-beacon-cw2-stealthburner-alternative-mounts/) funktioniert nicht wirklich gut! Es fehlen gute 3mm Höhe beim Cartographer die z.B. durch Unterlegscheiben ausgeglichen werden müssen.

Abstände messen

- Wenn der XCarriage Mount installiert ist, kann man mit dem "Cartographer probe nozzle offset tool by Esoterical" (https://www.printables.com/model/1060868-cartographer-probe-nozzle-offset-tool) den Abstand prüfen.
- Wenn das Offset Tool an die Stelle vom Cartographer geschraubt wird, dann sollte man am Rad drehen bis der Abstand zur Nozzel 0mm ist. Jetzt sollte auf dem Rad ein Abstand von 2,6-3 mm zu sehen sein:

1/8

```
Last update: 2025/01/26 07:26 klipper_faq:eddy:cartographer https://www.drklipper.de/doku.php?id=klipper_faq:eddy:cartographer&rev=1737872808
```


• Wenn der Abstand nicht zwischen 2,6 und 3mm ist, dann muss die Höhe vom Cartographer justiert werden!!

Verkabelung

- Die Kabel (CAN & X Endschalter) werden (wie im Video gezeigt) einfach hinter dem Stealtburner her gelegt. Dank des CNC Mount ist dort genug Platz.
- Das CAN Kabel wird seitlich (rechts von vorne gesehen) nach vorne verlegt. In etwa auf der Höhe wo auch das Stromkabel für die Heizpatrone verlegt ist.
- Bei dem gedruckten X Carriage ist die Kabelführung weit komplizierter da weniger Platz vorhanden ist!

Version prüfen

- Es ist eine gute Idee **vor dem Einbau** zu prüfen welche Firmware auf dem Cartographer installiert ist. Das kann USB oder CAN sein!
- Zunächst mal in der SSH Konsole folgenden Befehl starten dmesg - Hw

Damit zeigt uns Linux alles an was an den Rechner angeschlossen wird (vereinfacht gesagt).

- Jetzt den Cartographer über das original USB Kabel einfach mit dem SBC (z.B. Raspberry Pi) verbinden.
 - USB Version
 - Wenn der Cartographer für USB geflasht ist, dann kommt in etwa folgende Meldung:

```
[Jan21 18:06] usb 1-1.1: new full-speed USB device number 9 using
xhci_hcd
[ +0.109273] usb 1-1.1: New USB device found, idVendor=1d50,
idProduct=614e, bcdDevice= 1.00
[ +0.000029] usb 1-1.1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[ +0.000012] usb 1-1.1: Manufacturer: Cartographer
[ +0.000010] usb 1-1.1: SerialNumber: 02001F001143304146393320
```

[+0.009633] cdc_acm 1-1.1:1.0: ttyACM0: USB ACM device

CAN Version

Wenn der Cartographer für CAN geflasht ist, passiert hier einfach gar nichts! **Hinweis**

Wenn CAN schon geflasht ist, sagt das leider noch nichts über die CAN Geschwindigkeit aus. Wenn ihr die nicht wisst, dann würde ich den Cartographer per DFU Methode komplett neu flashen :

https://docs.cartographer3d.com/cartographer-probe/firmware/firmware-updating/via-dfu

USB nach CAN

Die folgende Anleitung beschreibt, wie man einen **Cartographer von USB auf CAN** flasht! Die Anleitung basiert auf dem Original von Cartographer :

https://docs.cartographer3d.com/cartographer-probe/firmware/firmware-switching/usb-to-canbus

- Der Cartographer ist **per USB an den SBC** (z.B. den Raspberry Pi) angeschlossen.
- In der SSH Konsole die Cartographer Repo holen
 - \circ cd ~
 - $\circ \mbox{git}$ clone

https://github.com/Cartographer3D/cartographer.git

- Jetzt müssen wir Katapult ein Bootloader damit wir über CAN später flashen können auf den Cartographer flashen.
 - ~/cartographer-klipper/scripts/firmware.py -f usb -t
 - - f usb bedeutet wir flashen über USB, denn noch ist der Cartographer ja im USB Modus
 - $\circ~$ -t bedeutet wir wollen Katapult flashen
 - Den Cartographer finden mit 1

1. Find 2. Find	l Cartographer I USB Firmware	Device				
4. Back	to main menu					
0. Exit				 	 	

• Den Cartographer auswählen - hier auch die 1

Querying USB devices							
Available Cartographer/Katapult Devices:							
usb-Cartographer_614e_380040001653584833373720-if00							
OPTIONS							
1. Select usb-Cartographer_614e_380040001653584833373720-if00							
3. Check Again							
5. Back 6. Back to main menu							
0. Exit							

Drauf achten das im Name auch Cartographer steht !

• Jetzt auswählen mit welcher CAN Bus Geschwindigkeit ihr arbeitet. Die Einstellung findet man in der Datei

sudo nano /etc/network/interfaces.d/can0

Hier dann die entsprechende Zahl wählen für 250k, 500k oder 1m.

- Jetzt zeigt uns das Setup noch eine Zusammenfassung und man kann mittels **Flash Selected Firmware** und dann **Yes** den Flash Vorgang starten.
- Das sollte dann in etwa so aussehen

Jetzt noch 2x Enter bestätigen und der Katapult Bootloader für CAN Betrieb ist geflasht.

CAN nach USB

 Sollte wer auf die Idee kommen von CAN nach USB zu wechseln, so ist das hier beschrieben: https://docs.cartographer3d.com/cartographer-probe/firmware/firmware-switching/canbus-to-us b

Einbau

- Wenn noch nicht passiert den Cartographer in den Drucker einbauen.
- Den Cartographer per CAN anschließen (das 4 polige Kabel).
- Drucker starten

Can Query

Hinweis

Die folgenden Schritte setzen natürlich voraus, das der CAN Bus korrekt im Vorfeld eingerichtet wurde!

Wenn das Board über CAN verbunden ist, dann kann man mit den folgenden Schritten prüfen, ob Katapult geflasht wurde:

- Klipper Dienst stoppen sudo systemctl stop klipper.service
- ~/klippy-env/bin/python ~/klipper/scripts/canbus_query.py can0
 Wenn der Cartographer gefunden wird, dann sollte in etwa folgende Ausgabe erscheinen:

```
pi@make-voron2:~ $ ~/klippy-env/bin/python
~/klipper/scripts/canbus_query.py can0
Found canbus_uuid=340cfffaff61, Application: CanBoot
Found canbus_uuid=87106788f45f, Application: Klipper
Total 2 uuids found
```

- Die UUID 340cfffaff61 meldet sich mit CanBoot. Das ist der Cartographer!
- Diese UUID brauchen wir später zum Flashen wieder also notieren!
- Die **UUID 87106788f45f** in diesem Beispiel ist mein SB2209 Kopfboard das meldet sich auch direkt mit Klipper.

Nichts erscheint

Wenn beim Can Bus Query sowas kommt ...

```
pi@make-voron2:~ $ ~/klippy-env/bin/python ~/klipper/scripts/canbus_query.py
can0
Found canbus_uuid=87106788f45f, Application: Klipper
Total 1 uuids found
```

oder sowas

```
pi@make-voron2:~ $ ~/klippy-env/bin/python ~/klipper/scripts/canbus_query.py
can0
Total 0 uuids found
```

dann sollte man erstmal folgendes prüfen:

- CAN Verkabelung CAN H und CAN L richtig rum ?
- 120 Ohm Endwiderstände richtig
- Klipper Dienst gestoppt?

Es kann auch manchmal helfen, den Klipperdienst komplett zu entfernen um den Bus zu scannen:

- sudo systemctl disable klipper
- sudo poweroff

- Jetzt den Drucker einmal komplett ausschalten, kurz warten und wieder einschalten. Dadurch werden alle CAN Boards resettet.
- Can bus scannen
 ~/klippy-env/bin/python ~/klipper/scripts/canbus_query.py can0
 Klipper wieder aktivieren
- sudo systemctl enable klipper sudo systemctl start klipper

CAN Firmware flashen

- ~/cartographer-klipper/scripts/firmware.py -f can - f can bedeutet wir flashen über CAN Cartographer suchen 1. Find Cartographer Device UUID die wir ermittelt haben nutzen 2. Enter UUID UUID eingeben (in meinem Fall ist das jetzt 340cfffaff61) und mit Enter bestätigen Firmware auswählen 2. Select CAN Firmware • Die CAN Geschwindigkeit ermittelt er automatisch! Firmware flashen 4. Flash Selected Firmware Anmerkung Da wir später die Touch Funktion nutzen möchten (für Auto Z Kalibrierung) muss man darauf achten das mindestens Version 5.1 der Firmware installiert wird. Die Version findet man in dem Dialog oben Firmware to Flash: 5.1.0/Survey_Cartographer_CAN_1000000_8kib_offset.bin Bestätigen 1. Yes, proceed to flash • Wenn am Ende folgendes erscheint: Katapult Connected Software Version: ? Protocol Version: 1.0.0 Block Size: 64 bytes Application Start: 0x8002000 MCU type: stm32f042x6 Verifying canbus connection Flashing '/tmp/cartographer-klipper_vax9a71s/Cartographer3D-cartographer Write complete: 22 pages Verifying (block count = 341)... Verification Complete: SHA = 6BEC92BE6A61A54F5630125E45BC124ED69F286C Flash Success
 - Press enter to continue..

dann war das Flashen erfolgreich!

• 2x mit Enter bestätigen und Fertig

kurzer Test

• Ein Query sollte jetzt als Application Klipper ergeben

```
pi@make-voron2:~ $ ~/klippy-env/bin/python
~/klipper/scripts/canbus_query.py can0
Found canbus_uuid=340cfffaff61, Application: Klipper
Total 1 uuids found
```

 Zudem kann man die Console nutzen um den Cartograhper zu pr
üfen ~/klippy-env/bin/python ~/klipper/klippy/console.py -c can0 340cfffaff61 (Die UUID von eurem Board eintragen!)

```
INF0:root:Starting CAN connect
INFO:can.interfaces.socketcan.socketcan:Created a socket
Loaded 74 commands (CARTOGRAPHER 5.1.0 / )
MCU config: ADC MAX=4095 BUS PINS i2c1=PB6,PB7
BUS PINS spi1=PA6, PA7, PA5 CANBUS FREQUENCY=1000000
CARTOGRAPHER ADC SMOOTH COUNT=16 CLOCK FREQ=48000000 MCU=stm32f042x6
PWM_MAX=2 RECEIVE_WINDOW=192 RESERVE_PINS_CAN=PA11,PA12
RESERVE PINS crystal=PF0, PF1 STATS SUMSQ BASE=256 STEPPER BOTH EDGE=1
WARNING:root:got {'clock': 1772600106, 'data': 33508404, 'temp': 54609,
'#name': 'cartographer data', '#sent time': 1874.901105438,
'#receive time': 1874.9421245859999}
                         connected
             =====
001.252: cartographer data clock=1792600312 data=33508404 temp=54610
. . .
```

• Beenden kann man das mit STRG + C

Konfiguration

 ./cartographer-klipper/install.sh
 Wenn man das nicht aufruft kriegt man probe Fehler (Unknown pin chip name 'probe')! ODer [scanner] no valid Config Element.

Initiales Kalibrieren

[force_move] enable_force_move: true

PROBE_SWITCH MODE=touch SAVE_CONFIG

G28 X Y G0 X150 Y150 → Check Endstops SET_KINEMATIC_POSITION X=150 Y=150 Z=200 → Z runter

fahren bis 1cm vor Bett CARTOGRAPHER_CALIBRATE METHOD=manual TESTZ Z=-0.01..... ACCEPT SAVE_CONFIG

G28 PROBE_ACCURACY

CARTOGRAPHER_ESTIMATE_BACKLASH backlash_comp eintragen (delta Wert)

Ecken nach quad_gantry_level Konfig Checken G0 X50 Y25 G0 X50 Y225 G0 X250 Y225 G0 X250 Y25 QUAD_GANTRY_LEVEL

BED_MESH_CALIBRATE

Touch Kalibrieren

Start Makro

Neues Druckplatte

- Wenn der Abstand nicht passen sollte, empfiehlt es sich die Touch Kalibrierung zu wiederholen.
- Ansonsten kann der Z Offset auch im Slicer angepasst werden https://docs.cartographer3d.com/cartographer-probe/fine-tuning/extras

Notes

• Models are not required if you are using Cartographer Survey Touch.

Links

- https://cartographer3d.com/
- https://docs.cartographer3d.com/

From: https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link: https://www.drklipper.de/doku.php?id=klipper_faq:eddy:cartographer&rev=1737872808

Last update: 2025/01/26 07:26

