
2026/02/15 09:43 1/4 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)

Dr. Klipper Wiki - https://www.drklipper.de/

ionpy Framework: Erweiterte Architektur-
Spezifikation

Dieses Dokument dient als detaillierte Implementierungsvorlage für die nächste Evolutionsstufe des
ionpy-Frameworks. Ziel ist die Transformation von einer reinen Monitoring-Plattform zu einem
interaktiven Automatisierungssystem.

1. Dynamische Eingabesynchronisation (The Mute-Pattern)

Problem: Race Conditions zwischen Hardware-Polling und User-Eingaben führen zu springenden
Werten in der UI.

1.1 Backend: Implementierung in AbstractDevice

[cite_start]Die Basisklasse AbstractDevice [cite: 113] wird um ein Muting-System erweitert.

Datenstruktur: Ein Dictionary self._mute_until: Dict[str, float] speichert pro
Entity-ID den Ablaufzeitstempel der Sperre.
Code-Integration (hardware/base.py):

[cite_start]In execute_command(self, entity_id, value)[cite: 137]: Vor dem
Aufruf des Handlers wird self._mute_until[entity_id] = time.time() + 3.0
gesetzt.
[cite_start]In update_entity(self, entity_id, raw_value, …)[cite: 128]: Bevor
das Sample erstellt wird, erfolgt die Prüfung:

if time.time() < self._mute_until.get(entity_id, 0): return # Update
verwerfen

1.2 Frontend: Universeller Focus-Lock

In der settings.html wird ein globaler Schutzmechanismus implementiert, der unabhängig vom
Gerätetyp funktioniert.

Logik: Verwendung eines Set() in JavaScript, das IDs von Elementen speichert, die den Fokus
haben.
Code-Hint:

 const lockedFields = new Set();
 containerEl.addEventListener('focusin', (e) =>
lockedFields.add(e.target.id));
 containerEl.addEventListener('focusout', (e) => setTimeout(() =>
lockedFields.delete(e.target.id), 500));
 // Im WebSocket-Handler:
 if (lockedFields.has(`i-${sample.entity_id}`)) return;

Last update: 2026/02/13 08:47 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

https://www.drklipper.de/ Printed on 2026/02/15 09:43

2. Strukturierte Daten: TableEntity

[cite_start]Ermöglicht die Verwaltung von Profilen, Sequenzen und Speicherplätzen (z.B. M1-M10 für
DPS5005 oder Timer-Listen für UDP3305 [cite: 303]).

2.1 Datenmodell (structures/entities.py)

[cite_start]Erweiterung der Entitäten um einen tabellarischen Typ[cite: 413]:

TableEntity:
[cite_start]columns: Liste von Meta-Definitionen (z.B. {key: “v”, type: “number”,
unit: “V”} [cite: 418]).
value: Liste von Zeilen-Objekten (z.B. [{v: 12.0, i: 1.0}, {v: 5.0, i: 2.0}]).

2.2 UI-Repräsentation

Dynamische Generierung einer HTML-Tabelle.
Jede Zelle erhält eine koordinatenbasierte ID (z.B. table-ch1_list-row0-v).
Änderungen senden ein spezielles Command-Objekt: {“row”: index, “column”: key,
“value”: new_val}.

3. Gamepad-Steuerung via Pygame

Integration von Human Interface Devices zur haptischen Steuerung.

3.1 Gamepad-Treiber (hardware/system/gamepad.py)

Ein dedizierter Treiber nutzt pygame.joystick zur Abfrage.

Threading: Da Pygame einen eigenen Event-Loop benötigt, wird dieser in einem Thread
gestartet:

 def pygame_loop(self):
 while self.running:
 for event in pygame.event.get():
 if event.type == pygame.JOYAXISMOTION:
asyncio.run_coroutine_threadsafe(self.update_entity(...), self.loop)

Entity-Mapping: Der Controller wird als GamepadEntity mit einem Dictionary-Value
dargestellt, der alle Achsen und Buttons enthält.

2026/02/15 09:43 3/4 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)

Dr. Klipper Wiki - https://www.drklipper.de/

3.2 Discovery

[cite_start]Der Treiber scannt beim Start mittels pygame.joystick.get_count() alle verfügbaren
Controller und legt pro Controller eine Instanz in der SystemEngine [cite: 81] an.

4. LogicService: Die Automatisierungs-Brücke

[cite_start]Ein zentraler Dienst in der SystemEngine[cite: 81], der Events zwischen Geräten
vermittelt.

4.1 Die Rule-Engine

[cite_start]Der Dienst abonniert den EventBus [cite: 85] und vergleicht jedes Sample mit einer Liste
von Regeln (rules.json).

Beispiel-Regel (Mapping):
Trigger: gamepad_0.axis_1 (Linker Stick Y).
Transformation: Linear Scaling (Input -1.0 bis 1.0 → Output 0.0 bis 32.0V).
Action: engine.execute_command(“udp3305_1”, “ch1_v_set”,
calculated_value).

4.2 Web-Konfigurator

Ein universelles Frontend-Modul erlaubt das Erstellen dieser Regeln per Dropdown:

WENN [Gerät wählen] [Entität wählen] ÄNDERUNG > X%
DANN [Zielgerät wählen] [Zielentität wählen] SETZE WERT [Transformations-Formel].

5. Erweiterter Entitäten-Katalog (Specs)

5.1 LogEntity (Geräte-spezifisch)

Zweck: Ein lokaler Feed für geräteinterne Ereignisse (Fehlercodes, Statuswechsel).
Visualisierung: Terminal-Widget in der Geräte-Tab-Ansicht.

5.2 StatusIndicatorEntity

Zweck: Visuelles Feedback ohne Text (virtuelle LED).
Mapping: Wert 0 = Grau, 1 = Grün, 2 = Rot blinkend.

5.3 XYGraphEntity

Last update: 2026/02/13 08:47 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

https://www.drklipper.de/ Printed on 2026/02/15 09:43

Zweck: Darstellung von Kennlinien (z.B. Strom über Spannung beim Batterie-Test).
[cite_start]Implementierung: Nutzt das Waveform-Sample-Format[cite: 425], aber mappt
Achse A gegen Achse B statt gegen die Zeit.

5.4 FileEntity

Zweck: Übertragung von Firmware-Dateien oder Konfigurations-Backups.
API: Endpoint für Multipart-Uploads, der direkt an den Treiber durchreicht.

6. Implementierungshinweise für KI-Programmierung

[cite_start]Stabilität: Alle Treiber müssen AbstractDevice [cite: 116] [cite_start]korrekt
implementieren, insbesondere die Fehlerbehandlung im loop()[cite: 137].
[cite_start]Performance: Der EventBus [cite: 85] ist das Nadelöhr; Samples sollten nur bei
signifikanten Änderungen gesendet werden.
[cite_start]Sicherheit: Automatisierungsregeln müssen “Safe-Guards” (z.B. maximale
Spannungsgrenzen) respektieren, die in der TableEntity oder NumericEntity [cite: 418]
definiert sind.

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link:
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

Last update: 2026/02/13 08:47

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

	ionpy Framework: Erweiterte Architektur-Spezifikation
	1. Dynamische Eingabesynchronisation (The Mute-Pattern)
	1.1 Backend: Implementierung in AbstractDevice
	1.2 Frontend: Universeller Focus-Lock

	2. Strukturierte Daten: TableEntity
	2.1 Datenmodell (structures/entities.py)
	2.2 UI-Repräsentation

	3. Gamepad-Steuerung via Pygame
	3.1 Gamepad-Treiber (hardware/system/gamepad.py)
	3.2 Discovery

	4. LogicService: Die Automatisierungs-Brücke
	4.1 Die Rule-Engine
	4.2 Web-Konfigurator

	5. Erweiterter Entitäten-Katalog (Specs)
	5.1 LogEntity (Geräte-spezifisch)
	5.2 StatusIndicatorEntity
	5.3 XYGraphEntity
	5.4 FileEntity

	6. Implementierungshinweise für KI-Programmierung

