2026/02/15 09:43 1/4 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollstandig)

ionpy Framework: Erweiterte Architektur-
Spezifikation

Dieses Dokument dient als detaillierte Implementierungsvorlage fur die nachste Evolutionsstufe des
ionpy-Frameworks. Ziel ist die Transformation von einer reinen Monitoring-Plattform zu einem
interaktiven Automatisierungssystem.

1. Dynamische Eingabesynchronisation (The Mute-Pattern)

Problem: Race Conditions zwischen Hardware-Polling und User-Eingaben flhren zu springenden
Werten in der Ul.

1.1 Backend: Implementierung in AbstractDevice

[cite_start]Die Basisklasse AbstractDevice [cite: 113] wird um ein Muting-System erweitert.

e Datenstruktur: Ein Dictionary self. mute until: Dict[str, float] speichert pro
Entity-ID den Ablaufzeitstempel der Sperre.
e Code-Integration (hardware/base.py):

o [cite_start]in execute command(self, entity id, value)[cite: 137]: Vor dem
Aufruf des Handlers wird self. mute until[entity id] = time.time() + 3.0
gesetzt.

o [cite start]in update entity(self, entity id, raw value, ..)[cite: 128]: Bevor
das Sample erstellt wird, erfolgt die Prifung:

if time.time() < self. mute until.get(entity id, 0): return # Update
verwerfen

1.2 Frontend: Universeller Focus-Lock

In der settings.html wird ein globaler Schutzmechanismus implementiert, der unabhangig vom
Geratetyp funktioniert.

* Logik: Verwendung eines Set () in JavaScript, das IDs von Elementen speichert, die den Fokus
haben.
e Code-Hint:

const lockedFields = new Set();

containerEl.addEventListener('focusin', (e) =>
lockedFields.add(e.target.id));

containerEl.addEventListener('focusout', (e) => setTimeout(() =>
lockedFields.delete(e.target.id), 500));

// Im WebSocket-Handler:

if (lockedFields.has(i-${sample.entity id})) return;

Dr. Klipper Wiki - https://www.drklipper.de/

Last update: 2026/02/13 08:47 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

2. Strukturierte Daten: TableEntity

[cite_start]Ermoglicht die Verwaltung von Profilen, Sequenzen und Speicherplatzen (z.B. M1-M10 fur
DPS5005 oder Timer-Listen fur UDP3305 [cite: 303]).

2.1 Datenmodell (structures/entities.py)

[cite_start]Erweiterung der Entitaten um einen tabellarischen Typ[cite: 413]:

e TableEntity:
o [cite_start]lcolumns: Liste von Meta-Definitionen (z.B. {key: “v"”, type: “number”,
unit: “V"} [cite: 418]).
o value: Liste von Zeilen-Objekten (z.B. [{v: 12.0, i: 1.0}, {v: 5.0, i: 2.0}]).

2.2 Ul-Reprasentation

e Dynamische Generierung einer HTML-Tabelle.

e Jede Zelle erhalt eine koordinatenbasierte ID (z.B. table-chl list-row0-v).

» Anderungen senden ein spezielles Command-Objekt: {“row”: index, “column”: key,
“value”: new val}.

3. Gamepad-Steuerung via Pygame
Integration von Human Interface Devices zur haptischen Steuerung.

3.1 Gamepad-Treiber (hardware/system/gamepad.py)

Ein dedizierter Treiber nutzt pygame. joystick zur Abfrage.

* Threading: Da Pygame einen eigenen Event-Loop bendtigt, wird dieser in einem Thread
gestartet:

def pygame loop(self):
while self.running:
for event in pygame.event.get():
if event.type == pygame.JOYAXISMOTION:
asyncio.run coroutine threadsafe(self.update entity(...), self.loop)

e Entity-Mapping: Der Controller wird als GamepadEntity mit einem Dictionary-Value
dargestellt, der alle Achsen und Buttons enthalt.

https://www.drklipper.de/ Printed on 2026/02/15 09:43

2026/02/15 09:43 3/4 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollstandig)

3.2 Discovery

[cite_start]Der Treiber scannt beim Start mittels pygame. joystick.get count() alle verfugbaren
Controller und legt pro Controller eine Instanz in der SystemEngine [cite: 81] an.

4. LogicService: Die Automatisierungs-Brucke

[cite_start]Ein zentraler Dienst in der SystemEngine[cite: 81], der Events zwischen Geraten
vermittelt.

4.1 Die Rule-Engine

[cite_start]Der Dienst abonniert den EventBus [cite: 85] und vergleicht jedes Sample mit einer Liste
von Regeln (rules. json).
e Beispiel-Regel (Mapping):
o Trigger: gamepad 0.axis 1 (Linker Stick Y).
o Transformation: Linear Scaling (Input -1.0 bis 1.0 = Output 0.0 bis 32.0V).

o Action: engine.execute command(“udp3305 1”, “chl v set”,
calculated value).

4.2 Web-Konfigurator

Ein universelles Frontend-Modul erlaubt das Erstellen dieser Regeln per Dropdown:

o WENN [Gerat wahlen] [Entitat wahlen] ANDERUNG > X%
e DANN [Zielgerat wahlen] [Zielentitat wahlen] SETZE WERT [Transformations-Formel].

5. Erweiterter Entitaten-Katalog (Specs)

5.1 LogEntity (Gerate-spezifisch)

e Zweck: Ein lokaler Feed flr gerateinterne Ereignisse (Fehlercodes, Statuswechsel).
e Visualisierung: Terminal-Widget in der Gerate-Tab-Ansicht.

5.2 StatusindicatorEntity

e Zweck: Visuelles Feedback ohne Text (virtuelle LED).
e Mapping: Wert 0 = Grau, 1 = Grin, 2 = Rot blinkend.

5.3 XYGraphEntity

Dr. Klipper Wiki - https://www.drklipper.de/

Last update: 2026/02/13 08:47 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

e Zweck: Darstellung von Kennlinien (z.B. Strom Uber Spannung beim Batterie-Test).
e [cite_start]implementierung: Nutzt das Waveform-Sample-Format[cite: 425], aber mappt
Achse A gegen Achse B statt gegen die Zeit.

5.4 FileEntity

» Zweck: Ubertragung von Firmware-Dateien oder Konfigurations-Backups.
e API: Endpoint flr Multipart-Uploads, der direkt an den Treiber durchreicht.

6. Implementierungshinweise fur Kl-Programmierung

e [cite_start]Stabilitat: Alle Treiber missen AbstractDevice [cite: 116] [cite_start]korrekt
implementieren, insbesondere die Fehlerbehandlung im loop () [cite: 137].

e [cite_start]Performance: Der EventBus [cite: 85] ist das Nadelohr; Samples sollten nur bei
signifikanten Anderungen gesendet werden.

e [cite_start]Sicherheit: Automatisierungsregeln mussen “Safe-Guards” (z.B. maximale
Spannungsgrenzen) respektieren, die in der TableEntity oder NumericEntity [cite: 418]
definiert sind.

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link: "F_
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825 ¥

Last update: 2026/02/13 08:47 E

https://www.drklipper.de/ Printed on 2026/02/15 09:43

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770968825

	ionpy Framework: Erweiterte Architektur-Spezifikation
	1. Dynamische Eingabesynchronisation (The Mute-Pattern)
	1.1 Backend: Implementierung in AbstractDevice
	1.2 Frontend: Universeller Focus-Lock

	2. Strukturierte Daten: TableEntity
	2.1 Datenmodell (structures/entities.py)
	2.2 UI-Repräsentation

	3. Gamepad-Steuerung via Pygame
	3.1 Gamepad-Treiber (hardware/system/gamepad.py)
	3.2 Discovery

	4. LogicService: Die Automatisierungs-Brücke
	4.1 Die Rule-Engine
	4.2 Web-Konfigurator

	5. Erweiterter Entitäten-Katalog (Specs)
	5.1 LogEntity (Geräte-spezifisch)
	5.2 StatusIndicatorEntity
	5.3 XYGraphEntity
	5.4 FileEntity

	6. Implementierungshinweise für KI-Programmierung

