
2026/02/15 09:42 1/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)

Dr. Klipper Wiki - https://www.drklipper.de/

ionpy Framework: Erweiterte Architektur-
Spezifikation (Vollständig)

Dieses Dokument beschreibt die integrale Architektur-Erweiterung des ionpy-Frameworks. Es dient als
verbindliche Grundlage für die Implementierung neuer Entitätstypen, haptischer Steuerungen und
geräteübergreifender Automatisierung.

1. Dynamische Eingabesynchronisation (Race Condition
Schutz)

Um zu verhindern, dass Hintergrund-Polling Benutzereingaben im Frontend überschreibt, wird ein
duales Sperrsystem implementiert.

1.1 Backend: Mute-Timer (AbstractDevice)

[cite_start]In der Klasse AbstractDevice (hardware/base.py) wird eine zeitbasierte Sperre pro
Entität eingeführt[cite: 117, 120].

[cite_start]Mechanismus: Ein Dictionary self._last_command_time: Dict[str, float]
speichert den Zeitpunkt des letzten Schreibbefehls[cite: 11, 54].
Logik:

[cite_start]Sobald execute_command() aufgerufen wird, erhält die entity_id einen
Zeitstempel[cite: 13, 138].
[cite_start]Die Methode update_entity() prüft diesen Zeitstempel: Liegt er weniger als
3,0 Sekunden in der Vergangenheit, wird das Sample verworfen und nicht auf den Bus
publiziert[cite: 87, 136].

Ziel: Die Hardware hat Zeit, den Wert intern zu setzen, und der Polling-Loop liest keine “alten”
Werte mehr zurück, während der User noch interagiert.

1.2 Frontend: Universeller Focus-Lock (JS)

In der Web-UI (settings.html) wird eine automatische Erkennung aktiver Eingabefelder implementiert.

Mechanismus: Nutzung eines Set() namens activeInputs.
Event-Delegation:

focusin: Fügt die Element-ID zum Set hinzu.
focusout: Entfernt die ID nach einer kurzen Verzögerung (ca. 300-500ms).

WebSocket-Logik: Die Funktion channel.onmessage prüft vor dem Update eines HTML-
Elements, ob dessen ID im Set vorhanden ist. [cite_start]Falls ja, wird das Update
verworfen[cite: 53, 54].



Last update: 2026/02/13 08:52 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969174

https://www.drklipper.de/ Printed on 2026/02/15 09:42

2. Strukturierte Daten: TableEntity (Deep Dive)

Die TableEntity ist das Herzstück für komplexe Geräteeigenschaften wie Speicherplätze (M1-M10),
Profil-Listen (Sequenzer) oder Zell-Übersichten.

2.1 Datenstruktur & Schema

Eine TableEntity kapselt nicht nur Daten, sondern auch deren Bedeutung.

Schema (columns): Definition der Spalten-Metadaten.
Jede Spalte definiert: key, name, type (number/text/toggle/action), unit, sowie
Constraints (min, max, step).

Daten (value): Eine Liste von Dictionaries, wobei jedes Dictionary eine Zeile darstellt.
Typen: Unterscheidung zwischen fixed_size (z.B. genau 10 Speicherplätze) und
dynamic_size (Zeilen hinzufügbar/löschbar).

2.2 Erweiterte Interaktions-Logik

Row-Updates: Das Frontend sendet Koordinaten-Pakete: { “row”: r, “col”: “key”,
“val”: value }.
Atomic Row Actions: Unterstützung einer Spalte vom Typ button. Dies ermöglicht “Apply”-
Buttons pro Zeile, um einen kompletten Parametersatz (z.B. Volt und Ampere eines Presets)
gleichzeitig an die Hardware zu senden, um instabile Zustände zu vermeiden.
Active Row Tracking: Ein zusätzliches Attribut active_row_index markiert die Zeile, die
das Gerät aktuell tatsächlich verwendet (z.B. welcher Speicherplatz gerade geladen ist).
Zell-basiertes Muting: Die Mute-Logik aus Kapitel 1 wird auf Zellebene angewendet, sodass
eine Bearbeitung in Zeile 1 nicht die Live-Updates von Zeile 2 blockiert.

3. Gamepad-Integration (HID-Steuerung)

Haptische Steuerung via USB-Controller, realisiert durch das pygame-Subsystem.

3.1 GamepadManager (hardware/system/gamepad.py)

Ein neuer Treiber-Typ, der autonom nach Controllern sucht.

[cite_start]Discovery: Nutzt pygame.joystick.get_count() und get_id(), um Controller
dynamisch zu finden, ohne Hardcoding in der Config[cite: 63, 64].
[cite_start]GamepadEntity: Eine neue Entitätsklasse, die den Zustand (Axes, Buttons, Hats,
Triggers) als Snapshot-Objekt im value-Feld hält[cite: 135].

3.2 Haptisches Feedback & Visualisierung

[cite_start]UI-Widgets: Spezielle Web-Komponenten für Joysticks (Fadenkreuz) und Trigger



2026/02/15 09:42 3/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)

Dr. Klipper Wiki - https://www.drklipper.de/

(Druckempfindliche Balken via UIMode.LEVEL)[cite: 422].
Sicherheitskonzept: Implementierung eines “Deadman-Switch” (Totmannknopf).
Steuerbefehle werden nur an andere Geräte weitergeleitet, wenn eine definierte Taste am
Gamepad gehalten wird.

4. LogicService: Die Automation Bridge

[cite_start]Zentraler asynchroner Dienst in der SystemEngine[cite: 81], der als Vermittler zwischen
dem Bus und den Geräte-Kommandos fungiert.

4.1 Die Rule-Engine

[cite_start]Der Dienst abonniert den EventBus [cite: 85, 427] und prozessiert Regeln aus einer
rules.json.

[cite_start]Trigger: Ein Sample von Gerät A (z.B. Gamepad-Achse oder BMS-Temperatur)[cite:
424].
Transformation (Scaling): Mathematische Umwandlung von Eingangswerten (z.B. Gamepad-
Stick -1.0…+1.0) in Zielwerte (z.B. Netzteil 0.0…32.0 V).
[cite_start]Action: Ausführung von engine.execute_command(target_dev, key,
transformed_val)[cite: 84, 433].

4.2 Cross-Device Szenarien (Beispiele)

Synchronisation: Die elektronische Last (Senke) folgt automatisch der Spannung des Netzteils
(Quelle), um eine konstante Leistung (CP-Mode) über das Framework zu simulieren.
Master-Slave: Zwei Netzteile werden so gekoppelt, dass Kanal 2 immer exakt dem Wert von
Kanal 1 folgt.

5. Erweiterter Entitäten-Katalog

[cite_start]Zusätzliche spezialisierte Typen für professionelle Laboranforderungen[cite: 421, 422,
423]:

Typ UI-Repräsentation Funktionalität

LogEntity Scrollende Konsole Lokaler Ereignis-Speicher für gerätespezifische Fehler (z.B.
SCPI-Fehlermeldungen).

StatusIndicator Virtuelle LED Farb-Mapping für Zustände (z.B. 0=Off, 1=OK/Grün,
2=Warnung/Gelb, 3=Alarm/Rot-Blinkend).

XYGraphEntity Kennlinien-Plot Darstellung von X-Y-Beziehungen (z.B. Batterie-Entladekurve:
Spannung über Kapazität).

FileEntity Upload/Download Schnittstelle für Firmware-Dateien (z.B. ESPHome .bin) oder
Konfigurations-Exports.

RangeEntity Multi-Slider/Input Gruppiert logisch zusammengehörige Werte für Sweeps (Start,
Stop, Step, Intervall).



Last update: 2026/02/13 08:52 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969174

https://www.drklipper.de/ Printed on 2026/02/15 09:42

Typ UI-Repräsentation Funktionalität

ScheduleEntity Zeitplan-Editor Verwaltung von Zeitereignissen (z.B. “Schalte Ausgang an
Wochentagen um 08:00 Uhr an”).

6. Implementierungs-Leitfaden für KI-Entwicklung

[cite_start]Concurrency: Alle Logik-Operationen müssen asynchron (async/await)
ausgeführt werden, um den Hardware-Poll-Loop nicht zu blockieren[cite: 1, 9].
[cite_start]Caching: Die SystemEngine nutzt ihren state_cache als “Single Source of Truth”
für die Logic-Regeln[cite: 81, 84].
Modularität: Neue Entitäten müssen in structures/entities.py definiert und in der
settings.html mit einem entsprechenden UI-Generator verknüpft werden.

7. Erweiterte Web-Views (Advanced Visualization)

Um die wachsende Komplexität der Daten (Gamepad, BMS, IMU-Sensoren) beherrschbar zu machen,
werden spezialisierte Views implementiert.

7.1 XYZ / 3D-Visualisierung (Spatial View)

Diese View nutzt Bibliotheken wie Three.js oder Plotly.js, um Daten im dreidimensionalen Raum
darzustellen.

[cite_start]Anwendungsfall A: IMU/Orientierung: Visualisierung der Fluglage oder Position
eines Sensors (basierend auf der VectorEntity [cite: 419]). [cite_start]Ein 3D-Modell (z.B. ein
PCB oder eine Batteriebox) neigt sich in Echtzeit entsprechend der Daten aus dem
VirtualLaboratory[cite: 252, 263].
Anwendungsfall B: Multi-Parameter-Sweeps: Darstellung von Abhängigkeiten wie
“Effizienz über Eingangsspannung und Laststrom”. Hierbei entsteht eine 3D-Oberfläche (Surface
Plot).
Anwendungsfall C: Raum-Mapping: Wenn Sensordaten mit Positionsdaten gekoppelt sind
(z.B. Temperatur-Mapping einer Oberfläche).

7.2 Multi-Device Dashboard (Global View)

[cite_start]Die aktuelle UI ist stark auf einzelne Tabs pro Gerät fokussiert[cite: 16]. Die Global View
bricht diese Struktur auf.

Konzept: Eine frei konfigurierbare Kachel-Ansicht (Grid-Layout), in der Entitäten verschiedener
Geräte gemischt werden können.
[cite_start]Beispiel: Ein “Power-Dashboard”, das die Eingangsleistung vom UDP3305 [cite:
303][cite_start], den Zellstatus vom JbdBms [cite: 145] [cite_start]und die Lastdaten der
AtorchDL24 [cite: 211] auf einer einzigen Seite zusammenfasst.



2026/02/15 09:42 5/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)

Dr. Klipper Wiki - https://www.drklipper.de/

7.3 Logic-Flow Visualizer (Automation View)

Da der geplante LogicService komplex werden kann, ist eine textuelle Regel-Liste oft
unübersichtlich.

Konzept: Eine Node-basierte Darstellung (ähnlich wie Node-RED).
[cite_start]Darstellung: Blöcke repräsentieren Trigger (z.B. Gamepad [cite: 255][cite_start]),
Logik-Gatter und Aktionen (z.B. Netzteil-Kommando [cite: 326]).
[cite_start]Live-Feedback: Linien zwischen den Blöcken leuchten kurz auf, wenn ein Event
über den EventBus fließt[cite: 85].

7.4 Session Replay & Analyse (History View)

[cite_start]Basierend auf dem SessionManager.

Konzept: Eine Ansicht zum “Zurückspulen” vergangener Messungen.
[cite_start]Funktion: Über eine Timeline kann eine aufgezeichnete Session (identifiziert durch
die session_id ) ausgewählt werden. Die UI zeigt dann die historischen Daten so an, als
würden sie gerade live passieren.
Vergleichs-Modus: Zwei Sessions können übereinandergelegt werden (z.B. Entladekurve von
Batterie A vs. Batterie B).

7.5 Synoptic View (Prozessgrafik)

Konzept: Ein statisches Hintergrundbild (z.B. ein Foto deines Versuchsaufbaus oder ein
Schaltplan), auf dem die Live-Werte der Entitäten an den physikalisch korrekten Stellen
eingeblendet werden.
Nutzen: Extrem intuitive Überwachung von komplexen Verdrahtungen.

8. Zusammenfassung der Datenfluss-Architektur

Der Datenfluss im erweiterten System folgt nun diesem Muster:

[cite_start]Hardware/Input (z.B. Owon HDS [cite: 270] [cite_start]oder Gamepad) → Bus[cite:1.
85].
[cite_start]LogicService (Abonniert Bus) → Berechnet Transformation →2.
Engine.execute_command[cite: 84].
[cite_start]Web-Views (Abonnieren Bus via WebSocket [cite: 427]) → Filtern nach Focus-Lock →3.
Visualisierung (3D, Table, Graph).

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link:
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969174

Last update: 2026/02/13 08:52

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969174


Last update: 2026/02/13 08:52 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969174

https://www.drklipper.de/ Printed on 2026/02/15 09:42


	ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)
	1. Dynamische Eingabesynchronisation (Race Condition Schutz)
	1.1 Backend: Mute-Timer (AbstractDevice)
	1.2 Frontend: Universeller Focus-Lock (JS)

	2. Strukturierte Daten: TableEntity (Deep Dive)
	2.1 Datenstruktur & Schema
	2.2 Erweiterte Interaktions-Logik

	3. Gamepad-Integration (HID-Steuerung)
	3.1 GamepadManager (hardware/system/gamepad.py)
	3.2 Haptisches Feedback & Visualisierung

	4. LogicService: Die Automation Bridge
	4.1 Die Rule-Engine
	4.2 Cross-Device Szenarien (Beispiele)

	5. Erweiterter Entitäten-Katalog
	6. Implementierungs-Leitfaden für KI-Entwicklung
	7. Erweiterte Web-Views (Advanced Visualization)
	7.1 XYZ / 3D-Visualisierung (Spatial View)
	7.2 Multi-Device Dashboard (Global View)
	7.3 Logic-Flow Visualizer (Automation View)
	7.4 Session Replay & Analyse (History View)
	7.5 Synoptic View (Prozessgrafik)

	8. Zusammenfassung der Datenfluss-Architektur


