2026/02/15 08:11 1/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollstandig)

ionpy Framework: Erweiterte Architektur-
Spezifikation (Vollstandig)

Dieses Dokument beschreibt die integrale Architektur-Erweiterung des ionpy-Frameworks. Es dient als
verbindliche Grundlage fur die Implementierung neuer Entitatstypen, haptischer Steuerungen und
gerateubergreifender Automatisierung.

1. Dynamische Eingabesynchronisation (Race Condition
Schutz)

Um zu verhindern, dass Hintergrund-Polling Benutzereingaben im Frontend Uberschreibt, wird ein
duales Sperrsystem implementiert.

1.1 Backend: Mute-Timer (AbstractDevice)

[cite_start]In der Klasse AbstractDevice (hardware/base.py) wird eine zeitbasierte Sperre pro
Entitat eingefuhrt[cite: 117, 120].

e [cite_start]Mechanismus: Ein Dictionary self. last command time: Dict[str, float]
speichert den Zeitpunkt des letzten Schreibbefehls[cite: 11, 54].
e Logik:
o [cite_start]Sobald execute command () aufgerufen wird, erhalt die entity id einen
Zeitstempel[cite: 13, 138].
o [cite_start]Die Methode update entity () pruft diesen Zeitstempel: Liegt er weniger als
3,0 Sekunden in der Vergangenheit, wird das Sample verworfen und nicht auf den Bus
publiziert[cite: 87, 136].
e Ziel: Die Hardware hat Zeit, den Wert intern zu setzen, und der Polling-Loop liest keine “alten”
Werte mehr zurlck, wahrend der User noch interagiert.

1.2 Frontend: Universeller Focus-Lock (JS)

In der Web-UI (settings.html) wird eine automatische Erkennung aktiver Eingabefelder implementiert.

e Mechanismus: Nutzung eines Set () namens activeInputs.
e Event-Delegation:
o focusin: Fugt die Element-ID zum Set hinzu.
o focusout: Entfernt die ID nach einer kurzen Verzdégerung (ca. 300-500ms).
e WebSocket-Logik: Die Funktion channel.onmessage prift vor dem Update eines HTML-
Elements, ob dessen ID im Set vorhanden ist. [cite_start]Falls ja, wird das Update
verworfen[cite: 53, 54].

Dr. Klipper Wiki - https://www.drklipper.de/

Last update: 2026/02/13 08:59 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969593

2. Strukturierte Daten: TableEntity (Deep Dive)

Die TableEntity ist das Herzstlick flr komplexe Gerateeigenschaften wie Speicherplatze (M1-M10),
Profil-Listen (Sequenzer) oder Zell-Ubersichten.

2.1 Datenstruktur & Schema

Eine TableEntity kapselt nicht nur Daten, sondern auch deren Bedeutung.

e Schema (columns): Definition der Spalten-Metadaten.
o Jede Spalte definiert: key, name, type (number/text/toggle/action), unit, sowie
Constraints (min, max, step).
e Daten (value): Eine Liste von Dictionaries, wobei jedes Dictionary eine Zeile darstellt.
e Typen: Unterscheidung zwischen fixed size (z.B. genau 10 Speicherplatze) und
dynamic_size (Zeilen hinzuflugbar/loschbar).

2.2 Erweiterte Interaktions-Logik

e Row-Updates: Das Frontend sendet Koordinaten-Pakete: { “row”: r, “col”: “key”,
“val”: value }.

e Atomic Row Actions: Unterstitzung einer Spalte vom Typ button. Dies ermdglicht “Apply”-
Buttons pro Zeile, um einen kompletten Parametersatz (z.B. Volt und Ampere eines Presets)
gleichzeitig an die Hardware zu senden, um instabile Zustande zu vermeiden.

e Active Row Tracking: Ein zusatzliches Attribut active row index markiert die Zeile, die
das Gerat aktuell tatsachlich verwendet (z.B. welcher Speicherplatz gerade geladen ist).

e Zell-basiertes Muting: Die Mute-Logik aus Kapitel 1 wird auf Zellebene angewendet, sodass
eine Bearbeitung in Zeile 1 nicht die Live-Updates von Zeile 2 blockiert.

3. Gamepad-Integration (HID-Steuerung)
Haptische Steuerung via USB-Controller, realisiert durch das pygame-Subsystem.

3.1 GamepadManager (hardware/system/gamepad.py)

Ein neuer Treiber-Typ, der autonom nach Controllern sucht.

e [cite_start]Discovery: Nutzt pygame.joystick.get count() undget id(), um Controller
dynamisch zu finden, ohne Hardcoding in der Config[cite: 63, 64].

* [cite_start]GamepadEntity: Eine neue Entitatsklasse, die den Zustand (Axes, Buttons, Hats,
Triggers) als Snapshot-Objekt im value-Feld halt[cite: 135].

3.2 Haptisches Feedback & Visualisierung

e [cite_start]Ul-Widgets: Spezielle Web-Komponenten fur Joysticks (Fadenkreuz) und Trigger

https://www.drklipper.de/ Printed on 2026/02/15 08:11

2026/02/15 08:11 3/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollstandig)

(Druckempfindliche Balken via UIMode.LEVEL)[cite: 422].

¢ Sicherheitskonzept: Implementierung eines “Deadman-Switch” (Totmannknopf).
Steuerbefehle werden nur an andere Gerate weitergeleitet, wenn eine definierte Taste am
Gamepad gehalten wird.

4. LogicService: Die Automation Bridge

[cite_start]Zentraler asynchroner Dienst in der SystemEngine[cite: 81], der als Vermittler zwischen
dem Bus und den Gerate-Kommandos fungiert.

4.1 Die Rule-Engine

[cite_start]Der Dienst abonniert den EventBus [cite: 85, 427] und prozessiert Regeln aus einer
rules.json.

e [cite_start]Trigger: Ein Sample von Gerat A (z.B. Gamepad-Achse oder BMS-Temperatur)|[cite:
424].

e Transformation (Scaling): Mathematische Umwandlung von Eingangswerten (z.B. Gamepad-
Stick -1.0...+1.0) in Zielwerte (z.B. Netzteil 0.0...32.0 V).

e [cite_start]Action: Ausfuhrung von engine.execute command(target dev, key,
transformed val)[cite: 84, 433].

4.2 Cross-Device Szenarien (Beispiele)

* Synchronisation: Die elektronische Last (Senke) folgt automatisch der Spannung des Netzteils
(Quelle), um eine konstante Leistung (CP-Mode) Uber das Framework zu simulieren.

* Master-Slave: Zwei Netzteile werden so gekoppelt, dass Kanal 2 immer exakt dem Wert von
Kanal 1 folgt.

5. Erweiterter Entitaten-Katalog

[cite_start]Zusatzliche spezialisierte Typen fur professionelle Laboranforderungen[cite: 421, 422,
423]:

Typ Ul-Reprasentation|Funktionalitat

Lokaler Ereignis-Speicher fur geratespezifische Fehler (z.B.
SCPI-Fehlermeldungen).

Farb-Mapping flr Zustande (z.B. 0=0ff, 1=0K/Grin,
2=Warnung/Gelb, 3=Alarm/Rot-Blinkend).

Darstellung von X-Y-Beziehungen (z.B. Batterie-Entladekurve:
Spannung Uber Kapazitat).

Schnittstelle flr Firmware-Dateien (z.B. ESPHome .bin) oder
Konfigurations-Exports.

Gruppiert logisch zusammengehdérige Werte flr Sweeps (Start,
Stop, Step, Intervall).

LogEntity Scrollende Konsole

Statusindicator|Virtuelle LED

XYGraphEntity Kennlinien-Plot

FileEntity Upload/Download

RangeEntity Multi-Slider/Input

Dr. Klipper Wiki - https://www.drklipper.de/

Last update: 2026/02/13 08:59 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969593

Typ Ul-Reprasentation | Funktionalitat
. . A Verwaltung von Zeitereignissen (z.B. “Schalte Ausgang an
ScheduleEntity |Zeitplan-Editor Wochentagen um 08:00 Uhr an”).

6. Implementierungs-Leitfaden fur Ki-Entwicklung

e [cite_start]Concurrency: Alle Logik-Operationen mussen asynchron (async/await)
ausgefuhrt werden, um den Hardware-Poll-Loop nicht zu blockieren[cite: 1, 9].

e [cite_start]Caching: Die SystemEngine nutzt ihren state cache als “Single Source of Truth”
fur die Logic-Regeln[cite: 81, 84].

e Modularitat: Neue Entitaten muissen in structures/entities.py definiert und in der
settings.html mit einem entsprechenden Ul-Generator verknipft werden.

7. Erweiterte Web-Views (Advanced Visualization)

Um die wachsende Komplexitat der Daten (Gamepad, BMS, IMU-Sensoren) beherrschbar zu machen,
werden spezialisierte Views implementiert.

7.1 XYZ / 3D-Visualisierung (Spatial View)

Diese View nutzt Bibliotheken wie Three.js oder Plotly.js, um Daten im dreidimensionalen Raum
darzustellen.

e [cite_start]Anwendungsfall A: IMU/Orientierung: Visualisierung der Fluglage oder Position
eines Sensors (basierend auf der VectorEntity [cite: 419]). [cite_start]Ein 3D-Modell (z.B. ein
PCB oder eine Batteriebox) neigt sich in Echtzeit entsprechend der Daten aus dem
VirtualLaboratorylcite: 252, 263].

* Anwendungsfall B: Multi-Parameter-Sweeps: Darstellung von Abhangigkeiten wie
“Effizienz Uber Eingangsspannung und Laststrom”. Hierbei entsteht eine 3D-Oberflache (Surface
Plot).

e Anwendungsfall C: Raum-Mapping: Wenn Sensordaten mit Positionsdaten gekoppelt sind
(z.B. Temperatur-Mapping einer Oberflache).

7.2 Multi-Device Dashboard (Global View)

[cite_start]Die aktuelle Ul ist stark auf einzelne Tabs pro Gerat fokussiert[cite: 16]. Die Global View
bricht diese Struktur auf.

e Konzept: Eine frei konfigurierbare Kachel-Ansicht (Grid-Layout), in der Entitaten verschiedener
Gerate gemischt werden kénnen.

e [cite_start]Beispiel: Ein “Power-Dashboard”, das die Eingangsleistung vom UDP3305 [cite:
303][cite_start], den Zellstatus vom JbdBms [cite: 145] [cite_start]und die Lastdaten der
AtorchDL24 [cite: 211] auf einer einzigen Seite zusammenfasst.

https://www.drklipper.de/ Printed on 2026/02/15 08:11

2026/02/15 08:11 5/6 ionpy Framework: Erweiterte Architektur-Spezifikation (Vollstandig)

7.3 Logic-Flow Visualizer (Automation View)

Da der geplante LogicService komplex werden kann, ist eine textuelle Regel-Liste oft
unubersichtlich.

» Konzept: Eine Node-basierte Darstellung (ahnlich wie Node-RED).

e [cite_start]Darstellung: Blocke reprasentieren Trigger (z.B. Gamepad [cite: 255][cite_start]),
Logik-Gatter und Aktionen (z.B. Netzteil-Kkommando [cite: 326]).

e [cite_start]Live-Feedback: Linien zwischen den Blocken leuchten kurz auf, wenn ein Event
uber den EventBus flieRt[cite: 85].

7.4 Session Replay & Analyse (History View)

[cite_start]Basierend auf dem SessionManager.

e Konzept: Eine Ansicht zum “Zuruckspulen” vergangener Messungen.

* [cite_start]Funktion: Uber eine Timeline kann eine aufgezeichnete Session (identifiziert durch
die session_1id) ausgewahlt werden. Die Ul zeigt dann die historischen Daten so an, als
wurden sie gerade live passieren.

e Vergleichs-Modus: Zwei Sessions kdnnen Ubereinandergelegt werden (z.B. Entladekurve von
Batterie A vs. Batterie B).

7.5 Synoptic View (Prozessgrafik)

e Konzept: Ein statisches Hintergrundbild (z.B. ein Foto deines Versuchsaufbaus oder ein
Schaltplan), auf dem die Live-Werte der Entitaten an den physikalisch korrekten Stellen
eingeblendet werden.

o Nutzen: Extrem intuitive Uberwachung von komplexen Verdrahtungen.

Sonstiges

Was ich mir sonst noch vorstellen konnte:

e Virtuelle Instrumente (Skins): Dass du fur das UDP3305 eine View baust, die exakt so aussieht
wie die Frontplatte des echten Gerats. Das macht die Bedienung im Web viel naturlicher.

e Webcam-Integration mit Overlay: Wenn dein Pi eine Kamera hat, kdnntest du den Videostream
anzeigen und die Messwerte (z.B. Temperatur) direkt Uber das Bild legen (ahnlich wie
Augmented Reality).

e Alarm-Management: Eine View, die nur dann aufpoppt, wenn Grenzwerte Uberschritten werden
(z.B. BMS-Alarm).

7.6 Webcam & Augmented Reality (AR) Overlay

Diese View kombiniert visuelles Feedback der Hardware mit den Live-Daten des EventBus.

Dr. Klipper Wiki - https://www.drklipper.de/

Last update: 2026/02/13 08:59 projekte:ionpy:ideen https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969593

Architektur des Datenflusses

* Video-Pfad: Webcam - OpenCV - FastAPI StreamingResponse (MJPEG) - Browser .
» Daten-Pfad: Hardware -» EventBus -» WebSocket -» Browser Canvas.
¢ Vorteil: Die hohe Last des Videos beeintrachtigt nicht die Echtzeit-Messdaten auf dem Bus.

Features

* AR-Overlay: Positionierung von Messwerten direkt Uber dem Videobild (z.B.
Temperaturanzeige direkt auf dem Kuhlkérper im Bild).

e Visual CV: Optionale Bilderkennung im Backend, die Ergebnisse (z.B. “Gerat eingeschaltet”) als
regulare Samples auf den Bus publiziert.

Implementierung (Code-Skizze)

e Backend: Neuer API-Endpunkt unter /api/video/stream.
e Frontend: Dynamisches Canvas-Mapping. Koordinaten fur Overlays werden in der
config.yaml des Gerats gespeichert.

8. Zusammenfassung der Datenfluss-Architektur

Der Datenfluss im erweiterten System folgt nun diesem Muster:

1. [cite_start]Hardware/Input (z.B. Owon HDS [cite: 270] [cite_startlJoder Gamepad) - Bus|cite:
851.

2. [cite_start]LogicService (Abonniert Bus) - Berechnet Transformation -
Engine.execute_command|cite: 84].

3. [cite_start]Web-Views (Abonnieren Bus via WebSocket [cite: 427]) - Filtern nach Focus-Lock -
Visualisierung (3D, Table, Graph).

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link: "F_
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969593 ¥

Last update: 2026/02/13 08:59 E

https://www.drklipper.de/ Printed on 2026/02/15 08:11

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=projekte:ionpy:ideen&rev=1770969593

	ionpy Framework: Erweiterte Architektur-Spezifikation (Vollständig)
	1. Dynamische Eingabesynchronisation (Race Condition Schutz)
	1.1 Backend: Mute-Timer (AbstractDevice)
	1.2 Frontend: Universeller Focus-Lock (JS)

	2. Strukturierte Daten: TableEntity (Deep Dive)
	2.1 Datenstruktur & Schema
	2.2 Erweiterte Interaktions-Logik

	3. Gamepad-Integration (HID-Steuerung)
	3.1 GamepadManager (hardware/system/gamepad.py)
	3.2 Haptisches Feedback & Visualisierung

	4. LogicService: Die Automation Bridge
	4.1 Die Rule-Engine
	4.2 Cross-Device Szenarien (Beispiele)

	5. Erweiterter Entitäten-Katalog
	6. Implementierungs-Leitfaden für KI-Entwicklung
	7. Erweiterte Web-Views (Advanced Visualization)
	7.1 XYZ / 3D-Visualisierung (Spatial View)
	7.2 Multi-Device Dashboard (Global View)
	7.3 Logic-Flow Visualizer (Automation View)
	7.4 Session Replay & Analyse (History View)
	7.5 Synoptic View (Prozessgrafik)
	Sonstiges

	7.6 Webcam & Augmented Reality (AR) Overlay
	Architektur des Datenflusses
	Features
	Implementierung (Code-Skizze)

	8. Zusammenfassung der Datenfluss-Architektur

