
2026/02/05 21:10 1/9 seKwaI

Dr. Klipper Wiki - https://www.drklipper.de/

seKwaI

Absolut! Hier ist eine umfassende Projektdokumentation, die alle bisher gesammelten Informationen
zusammenfasst und versucht, eine detaillierte Anleitung für Ihr DIY-Segway-Projekt zu geben.

—

Probleme

BNO085 nicht auf 100Hz gestellt → Test mit SerialPlot → Pitch immer 4-5 Werte gleich in der
Kurve
Garbage Collector Probleme bei zu komplexen print Anweisungen → Loop hat immer Spikes →
SerialPlot
Motoren verdreht
1 Motor invertiert
Looptime falsch berechnet (es war nicht der ganze Code der Loop in der Zeitberechnung)
sleep_ms anstelle von sleep_us → ungenaue Verzögerung der Looptime !

Tuning The final Step is to Tune the PID loop Kp, Ki & Kd parameters.

A good starting point is to slowly increase Kp until the robot oscillates around the balance point and
can catch a fall. Next, start Kd at around 1% the value of Kp and increase slowly until the oscillations
disappear and the robot glides smoothly when pushed. Finally, start with Ki around 20% of Kp and
vary until the robot “overshoots” the setpoint to actively catch a fall and return to vertical.

Links

https://learn.pimoroni.com/article/overclocking-the-pico-2
https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library

Projektdokumentation: DIY Segway mit RP2350 und MessKi-Integration

Version: 0.1 (Entwurf) Datum: 26. Mai 2025

1. Projektübersicht und Ziele

1.1. Projektidee Entwicklung eines selbstbalancierenden, zweirädrigen Fahrzeugs (Segway-ähnlich)
unter Verwendung eines Raspberry Pi RP2350 Mikrocontrollers für die Echtzeit-Regelung und der
bestehenden “MessKi”-Software für übergeordnete Steuerung, Parametrierung, Datenerfassung und
Visualisierung.

1.2. Kernziele * Realisierung eines funktionierenden, selbstbalancierenden Fahrzeugs. * Nutzung
von MicroPython auf dem RP2350 für die Regelung. * Nahtlose Integration mit der MessKi-Software
über eine serielle/USB-Schnittstelle. * Implementierung einer sicheren und intuitiven
Steuerungsmethode. * Modularer Aufbau für einfache Wartung und Erweiterung.

1.3. Angestrebte Funktionen * Automatische Balance im Stand und während der Fahrt. *

https://learn.pimoroni.com/article/overclocking-the-pico-2
https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library


Last update: 2025/06/27 03:49 projekte:sekwai:start https://www.drklipper.de/doku.php?id=projekte:sekwai:start

https://www.drklipper.de/ Printed on 2026/02/05 21:10

Steuerung von Geschwindigkeit und Richtung durch den Fahrer. * Fahrererkennung als
Sicherheitsmerkmal (Dead Man's Switch). * Übertragung von Telemetriedaten (Neigungswinkel,
Geschwindigkeit, Batteriestatus etc.) an MessKi. * Empfang von Steuerparametern (z.B. PID-Werte,
Geschwindigkeitslimits) von MessKi. * Live-Visualisierung der Segway-Daten über das MessKi-
Webinterface. * Logging von Fahr- und Sensordaten für Analyse und Optimierung. * Not-Aus-Funktion.

2. Systemarchitektur

2.1. Komponentenübersicht * Fahrzeugbasis: Rahmen, Räder (Hoverboard), Standplattform. *
Antriebseinheit: 2x Hoverboard-Motoren mit integrierten Encodern, 2x Hoverboard-Motorcontroller.
* Sensorik: IMU (BNO085), Fahrererkennungssensoren. * Steuereinheit (Low-Level): Raspberry Pi
RP2350. * Steuereinheit (High-Level & UI): PC/Server mit laufender MessKi-Software. *
Kommunikationslink: USB-Kabel (RP2350 als CDC-Device ↔ MessKi-Host). * Stromversorgung:
Hoverboard-Batterie, Step-Down-Konverter für RP2350 & Sensorik.

2.2. Aufgabenverteilung

* RP2350 (Echtzeit-Controller, MicroPython):

Auslesen des BNO085 IMU-Sensors (Neigung, Winkelgeschwindigkeit).
Implementierung des Balance-Algorithmus (PID-Regler) mit hoher Frequenz (Ziel: >100 Hz).
Auslesen der Fahrererkennungssensoren.
Auslesen der Lenk-Input-Sensoren (Drucksensoren oder Potentiometer).
Berechnung der Motorsteuerbefehle basierend auf Balance, Fahrer-Input und MessKi-Befehlen.
Ansteuerung der Hoverboard-Motorcontroller über UART.
Implementierung von Sicherheitslimits (max. Neigung, max. Geschwindigkeit).
Serielle Kommunikation mit MessKi:

Senden von Telemetriedaten (Winkel, Geschwindigkeit, Batteriestatus, Motorströme, etc.).
Empfangen und Verarbeiten von Steuerbefehlen (Soll-Geschwindigkeit) und Parametern
(PID-Werte, Limits) von MessKi.
Durchführen von Kalibrierungsroutinen.

* MessKi (High-Level Steuerung, Monitoring, UI, Konfiguration):

Benutzerschnittstelle (Web-Frontend) für:
Anzeige von Live-Telemetriedaten (Winkel, Geschwindigkeit, etc.).
Einstellen von Parametern (PID-Gains, Max-Speed, Max-Tilt).
Auslösen von Kalibrierungsroutinen auf dem RP2350.
Gamepad-Interface zur optionalen, indirekten Steuerung (z.B. Setzen einer Soll-
Geschwindigkeit, *nicht* direkte Balance-Lenkung).

Neues MessKi-Gerät “SegwayInterface”:
Nutzt `SerialInput` oder `SCPIUsbInput` für die Kommunikation mit dem RP2350.
Definiert Channels und Measures für alle relevanten Segway-Daten.
Implementiert `@device_action`-Methoden zum Senden von Befehlen/Parametern an den
RP2350.

Datenausgabe über `WebSocketOutputHandler` an das Frontend.
Datenspeicherung über `CsvOutputHandler` für Analysen.
Logging von Systemereignissen und Fehlern.

3. Hardwarekomponenten

3.1. Mikrocontroller: Raspberry Pi RP2350 * Board: Raspberry Pi Pico W (oder ein anderes



2026/02/05 21:10 3/9 seKwaI

Dr. Klipper Wiki - https://www.drklipper.de/

RP2350-Board). * Vorteile: Ausreichend Rechenleistung (Dual Cortex-M0+ mit FPU), genug GPIOs,
ADC-Eingänge, I2C- und UART-Schnittstellen, gute MicroPython-Unterstützung. * Anschluss: Über
USB an den MessKi-Host-PC.

3.2. Inertial Measurement Unit (IMU): Bosch BNO085 * Modul: Breakout-Board mit BNO085. *
Vorteile: Hochintegrierte Sensor-Fusion-Algorithmen (Hillcrest/CEVA SH-2), liefert stabile
Orientierungsdaten (Quaternionen, Eulerwinkel), entlastet den RP2350. Höhere Update-Raten und oft
bessere Kalibrierung als BNO055. * Anschluss: Über I2C an den RP2350. * Bibliothek:
[dobodu/BOSCH-BNO085-I2C-micropython-library](https://github.com/dobodu/BOSCH-BNO085-I2C-mic
ropython-library)

3.3. Motorisierung: Hoverboard-Motoren und -Controller * Komponenten: 2x Standard
Hoverboard-Radnabenmotoren (meist BLDC mit Hallsensoren) und die zugehörigen Hoverboard-
Motorcontroller-Platinen (oft zwei separate oder eine kombinierte). * Ansteuerung: Die
Motorcontroller werden typischerweise über UART mit einem spezifischen seriellen Protokoll
angesteuert. Das Protokoll beinhaltet oft Befehle für Geschwindigkeit/Drehmoment für jedes Rad.

Ihr `HopfNRoll`-Projekt ist hier eine wertvolle Referenz für das Protokoll.

* Verbindung zum RP2350: Über eine UART-Schnittstelle des RP2350.

Level Shifter: Unbedingt erforderlich, wenn die Hoverboard-Controller mit 5V Logikpegel
arbeiten und der RP2350 mit 3.3V. Ein bidirektionaler Level-Shifter für TX/RX ist notwendig.

3.4. Fahrererkennung: Fußschalter / Drucksensoren * Variante A (einfach): Fußschalter

2x robuste Mikroschalter oder Endschalter.
Montage unter den Fußpads, sodass sie bei Belastung schließen.
Anschluss an digitale GPIO-Pins des RP2350 (mit internem oder externem Pull-up/-down
Widerstand).

* Variante B (fortgeschritten): Drucksensoren (FSRs)

2x oder 4x Force Sensitive Resistors (FSRs).
Montage unter den Fußpads.
Anschluss an ADC-Eingänge des RP2350 (oft über einen Spannungsteiler).
Ermöglicht eine feinere Erkennung und potenziell eine gewichtsbasierte Steuerung.

* Ziel: Motoren nur aktivieren, wenn beide Fußpads belastet sind.

3.5. Lenkmechanismus (Optionen) * Option A: Drucksensoren (wie 3.4B, erweitert für
Lenkung)

Mindestens ein FSR pro Fußpad, besser zwei (vorne/hinten) pro Pad.
Software interpretiert differentielle Druckverteilung zwischen linkem/rechtem Fuß und
vorderem/hinterem Bereich der Pads als Lenkimpuls.

* Option B: Lenkstange mit Potentiometer

Mechanische Konstruktion einer neigbaren Lenkstange.
Ein Dreh-Potentiometer (z.B. 10kΩ linear) erfasst den Neigungswinkel der Stange.
Potentiometer an einen ADC-Eingang des RP2350.

https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library
https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library


Last update: 2025/06/27 03:49 projekte:sekwai:start https://www.drklipper.de/doku.php?id=projekte:sekwai:start

https://www.drklipper.de/ Printed on 2026/02/05 21:10

* Option C: Joystick direkt am RP2350 (weniger empfohlen für die Hauptlenkung)

Ein kleiner analoger Thumbstick, montiert an einer Festhalte-Struktur.
X-Achse des Joysticks an einen ADC-Eingang.

3.6. Stromversorgung * Hauptbatterie: Standard Hoverboard Li-Ion Akku (typ. 36V, 10S). *
RP2350-Versorgung: Step-Down (Buck) Konverter-Modul, das die 36V der Hauptbatterie auf stabile
5V (für USB-Power-Input des Pico) oder direkt 3.3V (für VSYS-Pin des Pico) reduziert.

Der Konverter muss den Strombedarf des RP2350, der IMU und ggf. anderer 3.3V-Komponenten
decken können.

* Verkabelung: Geeignete Kabelquerschnitte, Sicherungen für den Hauptstromkreis und den Step-
Down-Konverter.

3.7. Optionale Komponenten * Status-LEDs (für Betriebszustand, Fehler, Kalibrierung) direkt am
RP2350. * Ein kleiner Summer für akustische Signale. * Not-Aus-Schalter (Hardware), der die
Stromzufuhr zu den Motoren unterbricht.

3.8. Materialliste (geschätzt, ohne Hoverboard-Basis) * Raspberry Pi RP2350 (Pico W oder
ähnliches) * BNO085 Breakout-Board * 2-4x Fußschalter oder FSRs * Step-Down Konverter (36V →
5V/3.3V) * Bidirektionaler Level Shifter (3.3V ↔ 5V, falls nötig für Hoverboard UART) * Potentiometer
(für Option 3.5B) oder Joystick-Modul (Option 3.5C) * Kabel, Steckverbinder (JST, Dupont etc.),
Schrumpfschlauch * Lochrasterplatine oder kleine Prototyping-Platine * Gehäuse für Elektronik *
Material für Rahmen/Plattform (Holz, Aluminiumprofile)

4. Software-Implementierung: RP2350 (MicroPython)

4.1. Entwicklungsumgebung * Thonny IDE oder VS Code mit MicroPython-Erweiterung (z.B. Pico-W-
Go). * REPL-Zugriff über USB-Serial für direktes Testen und Debugging.

4.2. Softwarestruktur (RP2350) * `main.py`: Hauptprogramm, Initialisierung, Start der
asynchronen Tasks. * `bno085_handler.py` (oder ähnlich): Kapselt die Logik für die BNO085-
Bibliothek, liefert aufbereitete Winkeldaten. * `hoverboard_protocol.py`: Implementiert das Senden
von Befehlen an die Hoverboard-Controller (inkl. Checksumme). * `pid_controller.py`: Klasse oder
Funktionen für den PID-Regler. * `config.py`: Speichert Kalibrierwerte, PID-Konstanten (ggf. aus Flash
geladen). * `utils.py`: Hilfsfunktionen (z.B. Quaternion-zu-Euler-Umrechnung, Mapping-Funktionen). *
Asynchrone Tasks (`uasyncio`):

`balance_loop()`: Hauptregelkreis (IMU lesen, PID, Motoren ansteuern).
`messki_communication_loop()`: Kommunikation mit MessKi.
Optional: `sensor_read_loop()`: Wenn IMU-Auslesung oder andere Sensorik komplexer ist und
separat laufen soll.

4.3. IMU-Integration (BNO085) * Einbindung der `BOSCH-BNO085-I2C-micropython-library`. *
Konfiguration der I2C-Schnittstelle auf dem RP2350. * Initialisierung des BNO085. * Aktivierung des
benötigten Sensor-Reports (z.B. `BNO_REPORT_GAME_ROTATION_VECTOR` für Neigung ohne
Magnetfeldeinfluss oder `BNO_REPORT_ROTATION_VECTOR` für 9-Achsen-Fusion). * Implementierung
einer Funktion `get_raw_bno_pitch_from_sensor()`, die den rohen Pitch-Winkel (oder den relevanten
Neigungswinkel) vom Sensor liefert. Dies erfordert das Parsen der Daten aus dem Report der
Bibliothek. * Implementierung der Kalibrierungsroutine (siehe 4.10).

4.4. Balance-Algorithmus (PID-Regler) * Implementierung einer PID-Reglerfunktion oder -klasse.



2026/02/05 21:10 5/9 seKwaI

Dr. Klipper Wiki - https://www.drklipper.de/

Eingang: `current_calibrated_tilt_angle`, `target_angle` (sollte 0.0 nach Kalibrierung sein).
Ausgang: Korrekturwert für die Motorgeschwindigkeit.

* Parameter `KP`, `KI`, `KD` (Proportional, Integral, Derivative Anteile). * Berechnung des Fehlers:
`error = target_angle - current_calibrated_tilt_angle`. * Berechnung des Integral-Terms (Summe der
Fehler über Zeit), inkl. Anti-Windup. * Berechnung des Differential-Terms (Änderungsrate des Fehlers).
* Loop-Zeit (`dt`) muss berücksichtigt werden. * `pid_output = (KP * error) + (KI * integral_error) +
(KD * derivative_error)`. * Tuning: Die PID-Werte müssen experimentell ermittelt werden. Starten Sie
mit kleinem P, dann D, dann I.

4.5. Motoransteuerung (Hoverboard-Controller) * Konfiguration der UART-Schnittstelle des
RP2350. * Implementierung der Funktion `send_hoverboard_command(left_speed, right_speed)`:

Nimmt Soll-Geschwindigkeitswerte für linken und rechten Motor (z.B. -1000 bis +1000).
Erzeugt das korrekte serielle Datenpaket gemäß Hoverboard-Protokoll.
Berechnet und fügt die erforderliche Checksumme hinzu.
Sendet das Paket über UART an die Motorcontroller.

4.6. Fahrererkennung * Funktion `is_rider_present()`:

Liest die Zustände der Fußschalter-GPIOs oder die Werte der FSR-ADCs.
Gibt `True` zurück, wenn ein Fahrer erkannt wird (z.B. beide Schalter gedrückt / ausreichender
Druck auf FSRs).
Wichtig: Der `balance_loop` darf die Motoren nur aktivieren, wenn ein Fahrer präsent UND das
System kalibriert ist.

4.7. Lenkungslogik * Funktion `read_steering_input_locally()`:

Liest die Werte der Lenksensoren (Drucksensoren oder Potentiometer).
Wandelt die Rohwerte in einen normalisierten Lenkbefehl um (z.B. -1.0 für voll links, 0.0 für
geradeaus, +1.0 für voll rechts).

* Integration in `balance_loop()`:

`steer_effect = normalized_steer_input * STEER_SENSITIVITY`.
`left_motor_cmd = base_speed_command - steer_effect`.
`right_motor_cmd = base_speed_command + steer_effect`.
`base_speed_command` kommt vom PID-Regler und dem Geschwindigkeits-Sollwert von
MessKi.
`STEER_SENSITIVITY` muss experimentell abgestimmt werden.

4.8. Kommunikation mit MessKi (Protokoll) * RP2350 agiert als serielles Gerät (USB CDC). *
RP2350 → MessKi (Telemetrie):

Regelmäßiges Senden von Datenpaketen, z.B. als ASCII-Zeilen oder JSON-Strings.
Format: `KEY1=VALUE1,KEY2=VALUE2\n` oder `{“tilt”: 1.23, “vbat”: 35.8}\n`
Beispiele für Daten: `calibrated_tilt_angle`, `raw_pitch`, `motor_left_cmd`, `motor_right_cmd`,
`battery_voltage` (falls messbar), `rider_present_status`, `current_steer_input`, `pid_error`,
`pid_integral`, `pid_derivative`, `pid_output`.

* MessKi → RP2350 (Befehle/Parameter):

Format: `CMD:ACTION=VALUE\n` oder `SET:PARAM=VALUE\n`



Last update: 2025/06/27 03:49 projekte:sekwai:start https://www.drklipper.de/doku.php?id=projekte:sekwai:start

https://www.drklipper.de/ Printed on 2026/02/05 21:10

Beispiele:
`CMD:SPEED=200` (Soll-Geschwindigkeit für Vorwärts/Rückwärts)
`SET:KP=12.5`
`SET:MAX_TILT=20.0`
`CMD:CALIBRATE_NOW`
`CMD:EMERGENCY_STOP`

Funktion `process_messki_command(command_str)` auf dem RP2350 zum Parsen und
Anwenden.

4.9. Sicherheitsfunktionen und Fehlerbehandlung * Maximale Neigung: Wenn
`calibrated_tilt_angle` einen kritischen Wert überschreitet (z.B. > 25-30 Grad), Motoren sofort
abschalten oder sanft herunterregeln. * IMU-Fehlererkennung: Wenn `get_tilt_angle()` `None`
zurückgibt oder Fehler signalisiert, Motoren stoppen. * Fahrer nicht präsent: Motoren sofort
stoppen. * Kommunikationsverlust zu MessKi: Nach einer bestimmten Zeit ohne “Heartbeat” oder
Befehl von MessKi in einen sicheren Zustand gehen (z.B. Stopp). * Batterie-Unterspannung:
Motoren abschalten, um Tiefentladung zu verhindern (falls Batteriespannung gemessen wird).

4.10. Kalibrierungsroutinen * Winkel-Offset-Kalibrierung:

Funktion `calibrate_level_procedure()` wie zuvor besprochen.
Auslösbar über Taster am Segway oder Befehl von MessKi.
Speichern des `ANGLE_OFFSET` im Flash (`config.py` oder separate Datei).
Laden des Offsets beim RP2350-Start.

* Lenkungs-Kalibrierung (falls nötig):

Für Potentiometer: Mittelstellung und Maximalausschläge erfassen.
Für Drucksensoren: Ruhewerte und Werte bei maximaler Belastung/Neigung erfassen.

5. Software-Implementierung: MessKi-Integration

5.1. Neues MessKi-Gerät: “SegwayInterface” * Config
(`SegwayConfig(DeviceConfigBase)`):

`device_class: Literal[“SegwayInterface”] = “SegwayInterface”`
`name: str = “RP2350 Segway Controller”`
`input_configs`: Liste, die eine `SerialInputConfig` für den USB-Port des RP2350 enthält (Port
muss vom Benutzer eingestellt werden).
`active_input_uuid`: UUID der `SerialInputConfig`.
Felder für Standard-PID-Werte, Max-Speed, Max-Tilt, die beim Start an den RP2350 gesendet
werden können.
`fetch_interval_sec`: Wie oft MessKi aktiv Daten vom RP2350 anfordert (falls Pull-Mechanismus)
oder Verarbeitungsintervall für empfangene Daten. Eher gering halten, da RP2350 von sich aus
senden sollte.

* Handler (`SegwayHandler(DeviceBase)`):

`_activate()`: Stellt sicher, dass der serielle Port geöffnet ist. Sendet ggf. initiale
Konfigurationsparameter an den RP2350.
`_run_device_task()`:

Liest kontinuierlich Daten vom seriellen Input (`await self._read_from_active_input()`).
Parst die empfangenen Telemetrie-Strings/JSONs vom RP2350.
Aktualisiert die entsprechenden Measures in den MessKi-Channels.



2026/02/05 21:10 7/9 seKwaI

Dr. Klipper Wiki - https://www.drklipper.de/

Holt Gamepad-Daten vom `GamepadHandler`.
Berechnet daraus eine Soll-Geschwindigkeit (z.B. Vorwärts/Rückwärts basierend auf
einem Stick). Wichtig: Die feine Balance-Lenkung geschieht auf dem RP2350!
MessKi liefert nur den “Wunsch” des Fahrers.
Sendet die Soll-Geschwindigkeit (und ggf. grobe Lenkrichtung, falls gewünscht, aber eher
nicht für Balance) an den RP2350.

`@device_action` Methoden:
`set_pid_gains(kp: float, ki: float, kd: float)`: Sendet `SET:KP=…` etc. an RP2350.
`set_max_speed(speed: int)`
`set_max_tilt_angle(angle: float)`
`trigger_calibration()`: Sendet `CMD:CALIBRATE_NOW` an RP2350.
`send_emergency_stop()`: Sendet `CMD:EMERGENCY_STOP`.
`send_target_speed(speed: int)` (intern von `_run_device_task` genutzt oder als Action).

5.2. Input-Handler Konfiguration (Serial/USB) * In der `SegwayConfig` wird eine
`SerialInputConfig` definiert. * Der `port` muss vom Benutzer in MessKi auf den korrekten virtuellen
COM-Port / `/dev/ttyACMx` des RP2350 eingestellt werden. * Baudrate, etc. müssen mit den
Einstellungen auf dem RP2350 übereinstimmen. * `read_mode` in MessKi sollte “readline” sein, wenn
der RP2350 mit Newline terminiert. `terminator` entsprechend setzen (z.B. `\n`).

5.3. Channel- und Measure-Definitionen in MessKi (für `SegwayConfig`) * Channel “Segway
Telemetry”:

`TiltAngle` (NumericMeasure, Einheit: Grad)
`AngularVelocity` (NumericMeasure, Einheit: Grad/s)
`BatteryVoltage` (NumericMeasure, Einheit: V)
`MotorLeftSpeed` (NumericMeasure, Einheit: RPM oder Einheit vom RP2350)
`MotorRightSpeed` (NumericMeasure, Einheit: RPM oder Einheit vom RP2350)
`RiderPresent` (StringMeasure oder NumericMeasure: “JA”/“NEIN” oder 1/0)
`SteeringInputRaw` (NumericMeasure, Rohwert vom Lenksensor)
`PIDError` (NumericMeasure)
`PIDOutput` (NumericMeasure)
`RP2350Status` (StringMeasure, z.B. “BALANCING”, “CALIBRATING”, “ERROR”)

* Channel “Control Outputs”:

`TargetSpeedToRP` (NumericMeasure, von MessKi an RP2350 gesendet)
`TargetSteerToRP` (NumericMeasure, falls MessKi auch Lenkimpulse sendet)

* Channel “PID Parameters”:

`Param_KP` (NumericMeasure, spiegelt den Wert auf dem RP2350 wider, lesend)
`Param_KI` (NumericMeasure)
`Param_KD` (NumericMeasure)

* Outputs: `WebSocketOutputHandler` für alle relevanten Channels, `CsvOutputHandler` für
Telemetrie.

5.4. Steuerung über MessKi (Gamepad, API) * Das Gamepad in MessKi wird *nicht* für die
direkte Links/Rechts-Balance-Lenkung verwendet. * Es kann verwendet werden, um eine Soll-
Geschwindigkeit (vorwärts/rückwärts) an den RP2350 zu senden. Der `_run_device_task` im
`SegwayHandler` würde z.B. den Y-Achsenwert eines Sticks lesen und als `CMD:SPEED=…` an den



Last update: 2025/06/27 03:49 projekte:sekwai:start https://www.drklipper.de/doku.php?id=projekte:sekwai:start

https://www.drklipper.de/ Printed on 2026/02/05 21:10

RP2350 senden. * Die API-Endpunkte (`@device_action`) ermöglichen das Setzen von Parametern
(PID, Limits) und das Auslösen von Aktionen (Kalibrierung, Not-Aus).

5.5. Datenvisualisierung und -logging * MessKi-Webfrontend zeigt Live-Werte aus den “Segway
Telemetry”-Measures an. * Grafische Darstellung von Neigungswinkel, Geschwindigkeiten etc. * CSV-
Logging für spätere Analyse der Fahrdynamik und PID-Abstimmung.

6. Mechanische Konstruktion

6.1. Rahmen und Plattform * Stabiler Rahmen, der die Hoverboard-Achsen/Motoren aufnimmt. *
Eine Plattform für den Fahrer, die ausreichend Platz bietet und die Montage der
Fußschalter/Drucksensoren ermöglicht. * Materialien: Aluminiumprofile, Multiplex-Holz, Stahl (je nach
verfügbaren Mitteln und Fähigkeiten). * Schwerpunkt beachten: Der Gesamtschwerpunkt (Fahrer +
Segway) sollte sich möglichst über der Radachse befinden.

6.2. Montage der Komponenten * RP2350, BNO085, Step-Down-Konverter, Level-Shifter in einem
geschützten Gehäuse unterbringen. * BNO085 möglichst nahe am Drehzentrum (Radachse) und
vibrationsarm montieren. Die genaue Ausrichtung (X, Y, Z Achsen) muss in der Software
berücksichtigt werden. * Sichere Montage der Batterie.

6.3. Lenkmechanismus (falls zutreffend) * Drucksensoren: Sauber unter den Fußpads
integrieren, sodass sie zuverlässig auf Gewichtsverlagerung reagieren. * Lenkstange: Stabile
Lagerung der Drehachse, spielfreie Verbindung zum Potentiometer/Encoder. Endanschläge für die
Lenkstange vorsehen.

6.4. Verkabelung und Stromverteilung * Sorgfältige Verkabelung mit ausreichenden
Querschnitten, besonders für die Motorcontroller und die Hauptbatterie. * Zugentlastung für alle
Kabel. * Übersichtliche Stromverteilung mit Sicherungen. * Gute Abschirmung für Signalleitungen
(IMU, UART), um Störungen zu vermeiden.

7. Testplan und Inbetriebnahme

SEHR WICHTIG: Bei allen Tests mit Motorkraft äußerste Vorsicht walten lassen! Das
Segway muss immer gesichert sein, um unkontrolliertes Wegfahren oder Umkippen zu
verhindern! Beginnen Sie mit aufgebockten Rädern.

7.1. Modultests (RP2350) * BNO085: Daten auslesen, Winkelberechnung prüfen, Kalibrierung
testen. Ausgabe über Serial an PC. * Hoverboard-Controller: Serielle Befehle senden, Motoren
manuell drehen lassen (langsam!), Drehrichtung prüfen. * Fahrererkennung: Funktion der
Schalter/FSRs prüfen. * Lenksensorik: Rohwerte der Drucksensoren/Potis auslesen und prüfen.

7.2. Statische Balance-Tests (gesichert) * Segway aufbocken, sodass die Räder frei drehen
können, aber das Gestell nicht umkippen kann. * Fahrererkennung aktivieren (Gewichte auf Pads). *
Balance-Regler (PID) aktivieren. * Ziel: Die Räder sollten versuchen, die Plattform horizontal zu
halten, wenn sie manuell leicht geneigt wird. * PID-Tuning beginnen:

  1.  Nur P-Anteil (I und D auf 0): P erhöhen, bis leichte Oszillationen
auftreten. Dann P etwas reduzieren.
  2.  D-Anteil hinzufügen: D erhöhen, um Oszillationen zu dämpfen.
  3.  I-Anteil hinzufügen (vorsichtig): I erhöhen, um statische Fehler
auszugleichen.
  *   Iterativ vorgehen!



2026/02/05 21:10 9/9 seKwaI

Dr. Klipper Wiki - https://www.drklipper.de/

7.3. Dynamische Balance-Tests (mit Fahrer, SEHR GUT GESICHERT!) * Personen zum Sichern
bereitstellen! Langsam beginnen. * In einem Bereich mit viel Platz und ohne Hindernisse. *
Schutzausrüstung tragen (Helm!). * Feintuning der PID-Werte. * Testen der Reaktion auf leichte
Störungen.

7.4. Lenkungstests * Wenn Balance grundlegend funktioniert, Lenklogik aktivieren. * Zuerst bei
sehr langsamer oder keiner Vorwärtsbewegung testen. * `STEER_SENSITIVITY` anpassen für ein
angenehmes Lenkverhalten.

7.5. MessKi-Integrationstests * RP2350 mit MessKi verbinden. * Prüfen, ob Telemetriedaten
korrekt in MessKi angezeigt werden. * Testen der Parameteränderung über MessKi (PID-Werte,
Limits). * Testen der Soll-Geschwindigkeitsvorgabe von MessKi an RP2350.

7.6. Sicherheitsüberprüfungen * Funktion der Fahrererkennung unter allen Bedingungen. *
Reaktion auf maximale Neigung. * Not-Aus-Funktion. * Verhalten bei niedrigem Batteriestand.

8. Mögliche Erweiterungen und Zukünftige Arbeiten * Verbesserte Sensor-Fusion-Algorithmen
(falls nicht BNO085). * Adaptiver PID-Regler. * Energierückgewinnung beim Bremsen (Hoverboard-
Controller unterstützen das oft). * Integration von GPS für Tracking. * Fortgeschrittenere Fahrmodi
(z.B. Sport, Eco). * Hinderniserkennung.

9. Sicherheitshinweise (SEHR WICHTIG!)

* Dies ist ein potenziell gefährliches Projekt! Ein unkontrolliertes Segway kann schwere
Verletzungen verursachen oder Sachschäden anrichten. * Arbeiten Sie immer mit größter
Vorsicht! * Tragen Sie immer geeignete Schutzausrüstung (Helm, Knie-/Ellbogenschützer) bei
Testfahrten. * Sichern Sie das Segway bei Tests immer, besonders in der Anfangsphase (z.B.
aufbocken, Haltevorrichtungen, zweite Person). * Implementieren Sie mehrere
Sicherheitsebenen (Fahrererkennung, Neigungslimits, Not-Aus). * Beginnen Sie mit niedrigen
Geschwindigkeiten und geringer Leistung. * Testen Sie in einem sicheren, freien Bereich
ohne Hindernisse oder andere Personen. * Seien Sie sich der Grenzen Ihrer Fähigkeiten
und der Hardware bewusst. * Lithium-Ionen-Akkus erfordern sorgfältigen Umgang!
Kurzschlüsse und Überladung vermeiden. Brandschutz beachten. * Übernehmen Sie die volle
Verantwortung für Ihr Projekt und dessen Betrieb.

—

Diese Dokumentation ist ein umfangreicher Leitfaden. Beginnen Sie mit kleinen, überschaubaren
Schritten und testen Sie jede Komponente gründlich, bevor Sie sie integrieren. Das Debugging und
Tuning des Balance-Reglers wird die meiste Zeit in Anspruch nehmen.

Viel Erfolg bei diesem spannenden Vorhaben!

From:
https://www.drklipper.de/ - Dr. Klipper Wiki

Permanent link:
https://www.drklipper.de/doku.php?id=projekte:sekwai:start

Last update: 2025/06/27 03:49

https://www.drklipper.de/
https://www.drklipper.de/doku.php?id=projekte:sekwai:start

	seKwaI
	Probleme
	Links


